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FOREWORD

Aircraft gas-turbine engine designs have been pushed to ever higher levels of

performance, primarily due to competition and the need for improved fuel

efficiency. Such improved performance is possible primarily due to higher operating

pressures and temperatures. The effect, however, has been a decrease in engine

durability. In hot-section components - the combustor and turbine - the more

hostile environments have accelerated damage and wear of parts, with associated

dramatically increased maintenance costs. In the past, minimal efforts have been

made to ensure required durability - technology advances being directed primarily

toward improving performance.

The activities of the NASA Turbine Engine Hot Section Technology (HOST) Project

are directed toward durability needs, as defined by industry, and a more balanced

approach to engine design. The HOST efforts will improve the understanding and

prediction of thermal environments, thermal loads, structural responses, and life by

focused experimental and analytical research activities. The overall approach is to

assess existing analysis methods for strengths and deficiencies, to conduct

supporting analytical and experimental research to rectify these deficiencies, to

incorporate state-of-the-art improvements into the analysis methods, and finally to

verify the improvements by bench-mark quality experiments. The research is

supported by the HOST Project with contracts, grants, and Lewis in-house activities.

To provide representatives from industry, academia, and government with the

latest findings and progress toward improved aircraft turbine engine durability, a

two-day workshop was held in October 1986. This publication contains the papers

presented at the workshop.

Daniel E. Sokolowsk£

Manager, HOST Project
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TURBINE ENGINE HOT SECTION TECHNOLOGY (HOST) PROJECT

Daniel E. Sokolowski and C. Robert Ensign

NASA Lewis Research Center

Cleveland, Ohio

The Hot Section Technology (HOST) Project is a NASA-sponsored endeavor to

improve the durability of advanced gas-turbine engines for con_aercial and military

aircraft. Through improvements in analytical models and life-prediction systems,

designs for future turbine-engine hot section components - the combustor and

turbine - will be analyzed more accurately and, thus, will incorporate features

required for longer life in the more hostile operating environment of high

performance engines.

Started in fiscal year 1981, the HOST Project has activities currently planned

through 1989 with an estimated total cost of over $44 million. While the Project's

focused research activities are necessarily analytical in nature, significant

experimental testing is required for better understanding of problems as well as

model verifications. The efforts are being conducted in-house at the NASA Lewis

Research Center, under contracts with major domestic turbine-engine manufacturers

and under grants to qualified universities. The contract and grant total funding is

approximately one-half of the total budget for fiscal year 1987.

At NASA Lewis the HOST Project serves as the focal point for advocacy, funding,

technical coordination, and information exchange. This workshop serves as the

primary vehicle for this last function; that is, to disseminate information and

elicit the exchange of ideas among participants.

Activities of the HOST Project are categorized under six disciplines:

(1) instrumentation, (2) combustion, (3) turbine heat transfer, (4) structural

analysis, (5) fatigue and fracture, and (6) surface protection. Management of the

project uses the matrix approach, as shown in figure 1. A subproject manager is

responsible for each discipline and reports to the manager of the HOST Project

All technical activities initiated and supported by the HOST Project are listed

in table I. To summarize these activities and their objectives, instrumentation is

being developed to obtain high-temperature, benchmark-quality data to develop and

verify analysis methods. These include flow sensors (LDV), heat flux sensors (thin

film), strain sensors (1800 °F static thin film), a high-frequency-response gas

temperature sensor (frequency compensated), and a hot-section optical viewing

system. Combustion work includes aerothermal model assessment and development as

well as dilution jet modeling. In turbine heat transfer two- and three-dimensional

flow and heat transfer are being studied on airfoil external boundaries, emphasizing

boundary-layer transition and viscous modeling. Also being investigated is

coolant-passage heat transfer, including midchord jet impingement cooling and

rotational passage effects. Structural analysis includes research into thermal

mechanical load models, component geometry-specific models, three-dimensional

inelastic analysis methods development, development of a thermal structural cyclic

test facility, and constitutive model development for both isotropic and anisotropic



materials in single-crystal and directionally solidified forms. Fatigue and

fracture includes research in life-prediction methods for creep-fatigue interactions

and elastoplastic crack propagation. Surface protection research includes studies

of corrosion phenomena, and thermal barrier coating analysis method developments.

To further understand the organization of the project and, more importantly,

the reasons for its activities, it is useful to consider the critical steps leading

to life prediction. The flow diagram in figure 2 shows such critical steps and may

be used for any hot section subcomponent; for example, combustor liners, turbine

blades, or turbine vanes. The first series of steps in figure 2 defines the engine

subcomponent geometry, material, and operating requirements. The remaining steps

are those being addressed by the HOST Project: (1) characterizing the hot section

environment, (2) characterizing thermomechanical loads, (3) determining material

behavior and structural response due to imposed loads, and (4) predicting life for

subcomponents exposed to cyclic operation. For these steps the technology needs and

notable technical progress to date are shown in figures 3 to 6.

Workshop publications and many contractor final reports carry the label "For

Early Domestic Dissemination" (FEDD) to protect national interests and, thus, are

available only to qualified U.S. citizens. Although contractor final reports have

been published, they often represent initial phases of multiphased work. Thus, this

annual workshop report is the primary document for reporting technical results for

the entire project.
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HOT SECTION ENVIRONMENT

NEED

• TO BETTER UNDERSTAND AND PREDICT THE AEROTHERMAL ENVIRONMENT
AROUND HOT SECTION PARTS.

HOST PROGRESS

• DEVELOPED VIEWING SYSTEM AND TESTED IN PW 2037 AND HPF; FUEL
INJECTOR OPERATION, LINER HOT SPOTS, AND LINER/VANE CRACKING
CAN BE OBSERVED.

• DEVELOPED DYNAMIC GAS TEMPERATURE MEASUREMENT SYSTEM AND
TESTED IN F-100 AND HPF; GAS TEMPERATURE FLUCTUATIONS CAN BE
ACCURATELY DETERMINED UP TO 1-KHz AND 3000 °F PEAKS.

• EVOLVED LASER ANEMOMETRY FOR MEASUREMENTS IN COMBUSTOR EX-
HAUST STREAM; EFFORTS UNDERWAY FOR MEASUREMENTS WITHIN TURBINE.

• IMPROVING RESOLUTION OF SPATIAL PROPERTY VARIATIONS AND QUANTI-
TATIVE ACCURACY OF AEROTHERMAL CODES, THROUGH 3-D NUMERICAL
SCHEMES, IMPROVED TURBULENCE AND CHEMISTRY MODELS, AND RELEVENT
BENCHMARK DATA.

• OBTAINED BROAD DATA BASE AND DEVELOPED EMPIRICAL MODEL FOR
MIXING DILUTION AIR JETS WITH COMBUSTION GASES; COMBUSTOR EXIT
TEMPERATURES PREDICTED ACCURATELY WITHIN RANGE OF DATA BASE;
3-D NUMERICAL CODES BEING IMPROVED IN SPEED AND GEOMETRIC
CAPABILITIES.

Figure 3

THERMOMECHANICAL LOADS

NEED

• TO BETTER UNDERSTAND AND PREDICT THE THERMAL AND MECHANICAL LOADS
ON CRITICAL PARTS LIKE LINERS, BLADES, AND VANES.

HOST PROGRESS

• EVOLVED TOTAL HEAT FLUX SENSORS FROM LINERS TO AIRFOILS; SENSITIVITY
TO HEAT FLUX GRADIENTS ALONG AIRFOIL MUST BE MINIMIZED.

• DETERMINED THE EFFECTS OF ROTATION ON COOLANT HEAT TRANSFER IN
SMOOTH-WALL PASSAGES AND MODIFIED "TEACH" CODE; SIMILAR EFFORTS
UNDERWAY FOR TURBULATED PASSAGES.

• DETERMINATION OF ROTATION ON AIRFOIL HEAT TRANSFER STARTING TO
PRODUCE RESULTS.

• ASSESSED 3-D BOUNDARY LAYER CODE; AGREEMENT WITH DATA IS
GENERALLY GOOD.

• OBTAINED BROAD DATA BASES AND MODIFIED STAN5 CODE TO ACCURATELY
PREDICT HEAT TRANSFER COEFFICIENTS, ESPECIALLY AT THE TRANSITION
POINT, FOR FILM AND NON-FILM COOLED AIRFOILS.

Figure 4



STRUCTURAL RESPONSE
NEED

• TO IMPROVE PREDICTION ACCURACY AND EFFICIENCY OF STRESSES AND
STRAINS ON HOT SECTION METALLIC PARTS DUE TO THERMOMECHANICAL
LOADS.

HOST PROGRESS

• DEVELOPED STRAIN MEASUREMENT APPROACH HAVING 1300 OF CAPABILITY;
EFFORTS UNDERWAY TOWARD 1800 °F CAPABILITY.

• DEVELOPED INTERFACING CODE WHICH AUTOMATICALLY TRANSFERS 3-D

THERMAL INFORMATION FROM A HEAT TRANSFER CODE (COARSE GRID)
TO A STRUCTURAL ANALYSIS CODE (FINER GRID).

• DEVELOPED 3-D INELASTIC STRUCTURAL ANALYSIS CODES FOR NONLINEAR
BEHAVIOR AT HIGH THERMOMECHANICAL LOADS; THREE CODES COVER
DIFFERENT APPROACHES--MOMM, MHOST, BEST3D; PROVIDED TENFOLD
INCREASE IN COMPUTATIONAL EFFICIENCY WITH IMPROVED ACCURACY.

• DEVELOPED SEVERAL VISCOPLASTIC CONSTITUTIVE MODELS FOR BOTH
ISOTROPIC AND ANISOTROPIC MATERIALS; BROADENED DATA BASE; VERIFIED
MODELS FOR RANGE OF TEST CONDITIONS; HIGH TEMPERATURE STRESS/
STRAIN PREDICTION CAPABILITY IMPROVED BY 30-PERCENT; LEWIS IS INTER-
NATIONALLY RECOGNIZED LEADER IN CONSTITUTIVE MODEL DEVELOPMENT.

• DEVELOPED MODULAR CODE FOR NONLINEAR STRUCTURAL ANALYSES OF
LINERS, BLADES, AND VANES OVER MISSION CYCLE; AUTOMATIC SOLUTION
STRATEGY FOR LINERS--SIMILAR STRATEGY UNDERWAY FOR BLADES AND
VANES.

Figure 5

LIFE PREDICTION

NEE__._DD
• TO ACCURATELY PREDICT THE NUMBER OF CYCLES TO FATIGUE CRACK

INITIATION (LIFE) AND CRACK GROWTH FOR COMPONENTS MADE OF ISO-
TROPIC AND ANISOTROPIC MATERIALS THAT ARE SUBJECTED TO COMPLEX
CYCLIC MECHANICAL AND THERMAL LOADS AT HIGH TEMPERATURES.

• TO ACCURATELY PREDICT THE LIFE OF THERMAL BARRIER COATINGS ON
LINERS AND AIRFOILS.

HOST PROGRESS
• DEVELOP NEW CONSTITUTIVE EQUATIONS AND LIFE MODELS THAT CAN

BE USED TO PREDICT LIFE FOR ADVANCED CONFIGURATIONS AND MATERIALS
UNDER COMPLEX LOADING CONDITIONS,

• EXTENDED MODELING CAPABILITIES TO INCLUDE MULTIAXlAL (2-D AND 3-D)
STRESS STATES AND THERMOMECHANICAL LOADING CONDITIONS.

• EXTENDED LABORATORY TESTING CAPABILITIES TO PERMIT COMPLEX THERMO-
MECHANICAL TESTS NEVER BEFORE POSSIBLE.

• SOME PREDICTIONS HAVE SHOWN IMPROVEMENTS IN ACCURACY BY A
FACTOR OF TWO.

• SIGNIFICANT PROGRESS TOWARD DEVELOPING LIFE PREDICTION MODELS
FOR BLADES MADE WITH ANISOTHOPIC MATERIALS.

• FORMULATED OXIDATION/THERMAL STRAIN MODEL FOR TBC LIFE PREDICTION
(LeRC) THAT IS BASIS FOR TWO PRELIMINARY LIFE PREDICTION MODELS
DEVELOPED BY P&W AND GTEC.

Figure 6
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HOST INSTRUMENTATION R&D PROGRAM OVERVIEW

D.R. Englund

NASA Lewis Research Center

Cleveland, Ohio

The HOST Instrumentation R&D program is directed at the development of two

categories of instrumentation. One is instrumentation capable of characterizing the

environment imposed on turbine engine hot-section components. This category

includes instruments for the measurements of gas flow, gas temperature, and heat

flux. The second category is instrumentation to measure the effect of the

environment on the hot-section components. This category includes strain measuring

instruments and an optical system capable of providing interior views of a burner

liner during operation. The program was formulated to concentrate on critial

measurements that could not be made with available instruments or with instruments

under development via other NASA- or DOD-funded programs or via Industrial Research

and Development programs.

The HOST instrumentation program for fiscal years 1984 through 1989 is shown in

the accompanying figure. There are no additions to the program this year, and two

contracts have been completed within this past year. One is the development of the

dynamic gas temperature measurement system. This work has included the demon-

stration of the frequency response of the system and improvements in the data-

reduction software that speeds up data reduction and makes the system work on a

general-purpose computer. The second completed contract is the demonstration of the

laser speckle photogrammetry system on the structural components response rig.

Results from this work were limited by the inability of the measurement to account

for errors due to out-of-plane distortion and rotation of the test sample. Further

use of optical instrumentation on the structural component response rig is antici-

pated for measurements of test sample surface deflection and, we hope, strain.

Other parts of the HOST instrumentation program have either been completed in

previous years or are continuing. The development of the turbine blade and vane

static strain gauge is progressing, with the major effort directed at thin-film

gauges made from the palladium-base alloy. Development of a wire strain gauge

system will also be undertaken when wire becomes available. Work on a process for

drawing the palladium-base alloy into suitable wire is underway at Battelle-

Columbus. We are also looking at alternative materials that may have potential for

high-temperature strain gauge applications through a research grant to Northwestern

University. The emphasis here is on the high-temperature resistance properties of

materials, including alloys, nitrides and carbides of transition metals, and silicon

carbide. Work at Lewis on high-temperature strain gauges has included the

establishment of an automated strain gauge test laboratory and work on application

techniques. The automated strain gauge laboratory is now operational. Contract

work to develop heat flux sensors for combustor liners and blades and vanes was

completed in 1985. Additional work on heat flux sensors and the establishment of an

in-house heat flux sensor calibrator is continuing under non-H0ST funding. The

experiment on turbulence measurement in the exhaust stream of an atmospheric burner

uses the dynamic gas-temperature measurement system and a laser anemometer to



determine the instantaneous product of density and velocity. Analysis of data from

an initial set of measurements is in progress; an additional test is being planned

in which heat flux sensors will also be tested. Finally, the work on laser

anemometry is continuing with a goal of operating a two-axis anemometer on the warm

turbine rig early in 1987.

HOST INSTRUMENTATION R&D PROGRAM

FISCAL YFAR
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1984 1985 1986 1987 1988 1989
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MENTS IN THE STRUCTURAL
COMPONENTS RESPONSE RIG

HIGH-TEMPERATURE STRAIN
GAUGE MATERIALS

IN-HOUSE HIGH-TEMPERA-
TURE STRAIN GAUGE CAPA-
BILITY DEVELOPMENT

HEAT FLUX SENSORS FOR
HIGH-TEMPERATURES
APPLICATIONS

TURBULENCE MEASUREMENT IN
STREAMS WITH FLUCTUATING
TEMPERATURE

LASER ANEMOMETRY FOR HOT-
SECTION APPLICATIONS
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Figure I
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HOST COMBUSTION R&T OVERVIEW

Raymond E. Gaugler

NASA Lewis Research Center

Cleveland, Ohio

The overall objective of the Turbine Engine Hot Section Technology Combustion

Project is to develop and verify improved and more accurate numerical analysis

methods for increasing the ability to design with confidence combustion systems for

advanced aircraft gas turbine engines.

The objective is being approached from two directions: computational and

experimental. On the computational side, the approach was to first assess and

evaluate existing combustor aerothermal analysis models by means of a contracted

effort initiated during fiscal year 1982. This effort has quantified the strengths

and deficiencies of existing models. The results of this assessment were summarized

at a previous HOST Workshop. Next, phase II contracts were let in fiscal 1984 to

develop new/improved numerical methods for the analysis of turbulent viscous

recirculating flows, with the prime objectives being improved accuracy and speed of

convergence. Progress reports under two contracts and a University Grant will be

presented at this workshop. The third part of the computational approach ties very

closely to the experiments. It will consist of incorporating improved physical

models into the computational codes.

On the experimental side, three types of experiments can be identified; first,

fundamental experiments directed toward improved understanding of the flow physics

and chemistry; second, experiments run to provide data for the empirical modeing of

complex phenomena; and third, benchmark experiments for computer code validation.

Four experimental efforts have been completed and reported on previously, and

three are still under way. Progress reports will be presented on those three at

this workshop.

The completed experimental programs were aimed primarily at obtaining a basic

understanding of the flows and improving empirical models. Two programs that

concentrated on the interaction of dilution jets and the main stream flow field have

added substantially to the understanding of such flows. A third experimental

program examined in detail the mass and momentum transport in swirling and

nonswirling coaxial jets. The fourth effort was an investigation of the radiative

heat loading in an advanced high pressure gas turbine combustor.

The other three experimental programs are concentrating on the generation of

benchmark quality data for use in validating new computer codes and models.

The phase III efforts are planned to get under way this year. Since last

year's workshop, discussions have been held with representatives of a number of

engine manufacturers, and, based on those meetings and the constraints of the HOST

program, it was decided that phase III will concentrate on generating benchmark data

for a reacting flow. The data will be used to verify computer codes and physical

models.
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COMBUSTOR FLOW PHENOMENA
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exit & /-High swirl air
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recirculation-J

/
Film cooling airJ
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Figure 1
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COMBUSTION

PROGRAM ELEMENT
81 82

FISCAL YEAR

83 84 85 86 87 88 89

EXPECTED

RESULT

AEROTHERMAL MODELING ASSESSMENT, PHASE I:

GARRETT

GENERAL ELECTRIC

PRATT AND WHITNEY

LATERAL JET INJECTION (OKLAHOMA STATE U.)

AEROTHERMAL MODEL DEVELOPMENT, PHASE II

MASS & MOMENTUM TRANSFER (P&W)

NUMERICAL METHODS (ALLISON, AVCO
EVERETT)

FLOW INTERACTION (ALLISON)

FUEL SPRAY-FLOWFIELD INTERACTIONS

(ALLISON, UTRC)

NUMERICAL METHODS (U. MINNESOTA)

E7
E7
E--I

[

m

I IDENTIFY MODEL AND
BENCHMARK DATA

DEFICIENCIES

3D FLOW MEASUREMENTS

NEW PHYSICAL MODEL AND

COMPUTING METHODS

MULTIPLE JET DILUTION MIXING (GARRETr) I

FLAME RADIATION/HEAT FLUX E

I
DILUTION JET ANALYSIS I

DIFFUSER STUDIES (GARREI-r)

(JOINT WITH AIR FORCE)

AEROTHERMAL MODEL DEVELOPMENT PHASEIII

I I

EXIT TEMPERATURE

PROFILE

HIGH PRESSURE FLAME

RADIATION

.JETMIXING MODEL

IMPROVED COMBUSTOR-

DIFFUSER INTERACTION MODEL

BURNING

BENCHMARK DATA

Figure 2

AEROTHERMAL MODEL DEVELOPMENT

PHASE-Ill

• FORMAL ANNOUNCEMENT OF INTENT MADE LAST APRIL.

• DETAILED DISCUSSIONS HELD WITH A NUMBER OF GAS-TURBINE-ENGINE MANUFACTURERS.

• CURRENTLY DEFINING THE SCOPE OF PHASE Ill, CONSTRAINED BY INDUSTRY NEEDS

AND NASA HOST RESOURCES.

• MAJOR EMPHASIS WILL BE ON GENERATION OF BENCHMARK-QUALITY REACTING FLOW DATA.

• THIRD QUARTER FY '87 IS NOW TARGET FOR CONTRACT INITIATION.

Figure 3

CD 86 22158
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HOST TURBINE HEAT TRANSFER SUBPROJECT OVERVIEW

Herbert J. Gladden

NASA Lewis Research Center

Cleveland, Ohio

The HOST turbine heat transfer subproject is maturing with all programs in

place and many bearing fruit. The accomplishments are interesting, varied, and in

abundance as will be seen at this workshop. The experimental data base ave leading

the analyses slightly, particularly in the nonrotating area of research (figs. 1

and 2). This situation is somewhat by tradition and someWhat by design.

The experimental part of the turbine heat transfer subproject consists of six

large experiments, Which will be highlighted in this overview, and three of someWhat

move modest scope. Three of the large experiments were conducted in the stationary

frame of reference and are at or near completlon. One of the initial efforts was

the stator airfoil heat-transfer program conducted at Allison Gas-Turbine Division.

The non-film-cooled and the showerhead-film-cooled data have already been reported.

Highlights of the data ave shown in figure 3. The gill-reglon film-cooling effort

is currently underway. The investigation of secondary flows in a 90" curved duct,

conducted at the University of Tennessee Space Institute, has also been completed.

The first phase examined flows with a relatively thin inlet boundary layer and low

free-stream turbulence. The second phase studied a thicker inlet boundary layer and

higher free-stream turbulence. A comparison of analytical and experimental

cross-flow velocity vectors is shown for the 60" plane in figure 4. Two experiments

were also conducted at Lewis in the hlgh-pressuve facility. One examined

full-coverage film-cooled vanes, and the other, advanced instrumentation. Reports

on some of these results were published last year.

The other three large experimental efforts were conducted in a rotating

reference frame. An experiment to obtain gas-path airfoil heat-transfer

coefficients in the large, low-speed turbine at United Technologies Research Center

has been completed. Single-stage data with both high- and low-inlet turbulence were

taken in phase I. The second phase examined a one and one-half stage turbine and

focused on the second vane row. Under phase III aerodynamic quantities such as

interrow time-averaged and rms values of velocity, flow angle, inlet turbulence, and

surface pressure distribution were measured.

Coolant passage heat-transfer data in a rotating frame are also being obtained

at Pratt & Whitney/United Technologies Research Center. Experiments with smooth

wall serpentine passages and with skewed turbulators have been completed. Some

results of the effect of rotation and heat transfer are shown in figure 5 for the

smooth-wall case. An experiment with turbulators normal to the flow will be started

this year.

The final large experiment will be conducted at Lewis in the warm-core

turbine. This facility, Which fully scales a modern turbine stage, is being

modified for laser anemonetry access to the vane and blade passages. Research will



p

begin in 1987. Once intended to be a step on the way to the hlgh-pressure turbine,

this rig is now the main verification rig in the turbine heat-transfer subproject.

The three smaller and somewhat more fundamental experiments ere directed at

important mechanisms. Two are being conducted by Arizona State University. The
first, on impingement cooling, is complete; the second, on tip region heat transfer

simulation, is providing excellent data. An experiment on the heat-transfer effects

of large-scale, high-intensity turbulence, similar to that found at combustor exits,

is also underway at Stanford University.

The analytic efforts in the turbine-heat-transfer subproject are characterized

by efforts to adapt existing codes and analyses to turbine heat transfer. In

general these codes and analyses were well established before HOST became involved;

however, the applications were not for turbine heat transfer, and extensive revision

has often been required. In some cases the analytic and experimental work were part
of the same contract.

The well-known STAN5 boundary-layer code was modified by Allison Gas Turbine

Division to define starting points and transition to turbulent flow to accommodate

their data, with and without film cooling, as well as data in the literature.

United Technologies Research Center assessed its three-dlmensional boundary

layer code and modified it to allow for eas_er application of turbine type Inviscid

edge conditions. The same code is being modified for use as a two-dimensional

unsteady code in order to analyze the rotor-stator interaction data.

The also well-known three-dlmensional Navier-Stokes TEACH code has been

modified by Pratt & Whitney to incorporate rotational terms. The modified code has

been delivered to NASA Lewis and work has begun on it here.

A fully elliptic three-dlmensional Navier-Stokes code has been under

development at Scientific Research Associates (SRA) for many years. It was

primarily directed at inlets and nozzles. SRA, first as a subcontractor to Allison

Gas Turbine Division and now as a prime contractor, has been modifying the code for

turbine applicatlons. This includes grid work for turbine airfoils, adding an

energy equation and turbulence modeling, and improved user friendliness. The code

has been installed on the Lewis Cray XMP, and a first report on its use for turbine

heat-transfer has been published. A comparison with the Allison nonrotating

experimental data is shown in figure 6.

Finally, a fundamental study on numerical turbulence modeling, directed

speclfically at the alrfoil in the turbine environment, is underway at the

University of Minnesota.
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EFFECT OF ROTATION ON COOLANT PASSAGE HEAT TRANSFER
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HOST STRUCTURAL ANALYSIS PROGRAM OVERVIEW

R.L. Thompson

NASA Lewis Research Center

Cleveland, Ohio

Hot-section components of aircraft gas-turbine engines are subjected to severe

thermal-structural loading conditions, especially during the startup and takeoff

portions of the engine cycle. The most severe and damaging stresses and strains are

those induced by the steep thermal gradients induced during the startup transient.

These transient stresses and strains are also the most difficult to predict, in part

because the temperature gradients and distributions are not well known or readily

predictable and, in part, because the cyclic elastic-viscoplastic behavior of the
materials at these extremes of temperature and strain are not well known or readily

predictable.

A broad spectrum of structures-related technology programs is underway to

address these deficiencies at the basic as well as the applied level, with

participation by industry and universities, as well as in-house at NASA Lewis. The

three key program elements in the HOST structural analysis program are computations,

constitutive modeling, and experiments for each research activity. Also shown are

tables summarizing each of the activities. These elements are shown in the

accompanying schedule and figures.

The computations element of the structures program focuses on developing

improved time-varying thermal-mechanical load models for the entire engine mission

cycle from startup to shutdown. The thermal model refinements will be consistent

with those required by the structural code, including considerations of mesh-point

density, strain concentrations, and thermal gradients. Models will be developed for

the engine hot section components namely, the burner liner, turbine vane, and

turbine blade. An automated component-specific geometric modeling capability, which

will produce three-dimensional finite-element models of the components, is another

part of this element. Self-adaptive solution strategies will be developed and
included to facilitate the selection of appropriate elements, mesh sizes, etc. The

development of new and improved, nonlinear, three-dimensional finite elements and

associated structural analysis programs, including the development of temporal

elements with time-dependent properties to account for creep effects in the

materials and component, is another major part of this element.

The second element of the structures program is the development of constitutive

models and their implementations in structural analysis codes. Improved

constitutive modeling methods to improve the prediction of cyclic thermomechanical

viscoplastic material behavior are being developed for both isotropic and

anisotropic materials. The models are being incorporated in nonlinear,

finite-element structural analysis computer programs and will be exercised on

combustor liners, and turbine blades and vanes.

The third element of the structures program is experimentation. Experimental

facilities to aid in developing and verifying theories and models as well as to aid

;:'RECEDIHG PAGE BLANK NOT Fll..li_D 19



in evaluating advanced instrumentation have been constructed at Lewis. These

include the high temperature structures laboratory for testing tubular specimens and

the structural component response test facility for testing plates, cylinders, and

combustor liner segments. Large quality data bases have been generated in the test

facilities. Advanced strain measurement systems have also been evaluated.

Further explanation and details about the three elements in the structures

program mentioned above are given in the Structural Analysis section of this

publication.
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STRUCTURALANALYSIS... IT'S ROLEIN HOST

GOAL:
TO OE_IELOPAND VALIOATEINTEGRATEDTIME-VARYINGTHERMAL/MECHANICALLOADMODELS,COMPONENT-SPECIFIC

AUTOMATEDGEOMETRICMODELINGAND SOLUTIONSTRATEGYCAPABILITIES,AND ADVANCEDINELASTICANALYSIS

METHODSANDCONSTITUTIVEMODELS,INCLUDINGPLASTICITYAND CREEPEFFECTS,FORNONLINEAR,ANISOTROPIC,

FINITEELEMENTSTRUCTURALANALYSISANDDESIGNCOMPUTERCODES.

PROGRAM INTEGRATION PROGRAM ELEMENTS:
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Figure 1
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HOTSECTIONCOMPONENTSREQUIRING
3-D INELASTICANALYSIS

COMBUSTOR LINER TURBINE BLADE TURBINE VANE

_-85-3293

Figure 3

BIAXIAL CONSTITUTIVE EQUATION DEVELOPMENT
FOR SINGLE CRYSTALS

OBJECTIVE:

DEVELOP AND VERIFY TWO NEW TYPES 0E CONSTITUTIVE MODELS IN MULTIAXIAL FORM FOR A REALISTIC
AIRCRAFT ENGINE SINGLE CRYSTAL ALLOY.

GRANT:

UNIVERSITY OF CONNECTICUT (NAG3-512).

APPROACH:

DEVELOPMENT IS DIRECTED TOWARD ANISOTROPICNICKEL BASE SUPERALLOYS FOR TURBINE BLADES AND
VANES.

• BIAXlAL CLASSIFICATION EXPERIMENTS, INCLUDING PROPORTIONAL AND NONPORTIONAL LOADS, WILL BE
PERFORMED TO DETERMINE QUALIFICATIONS MATERIAL BEHAVIOR FOR PWA 1480.

• MODEL DEVELOPMENT WILL BE BASED ON A CRYSTALLOGRAPHIC SLIPSYSTEM VIEWPOINT AS WELL AS
A MACROSCOPIC CONTINUUM APPROACH.

• HIGH TEMPERATURE BIAXlAL EXPERIMENTS WILL BE CONDUCTEDTO DETERMINE FUNCTIONAL FORMS AND
MATERIAL CONSTANTS.

• COMPLEX MODEL VERIFICATION TESTS, INCLUDING THERMOMECHANICALTESTS, WILL BE CONDUCTED.

• THE SINGLE CRYSTAL CONSTITUTIVE MODELS WILL BE INCORPORATEDIN A FINITE-ELEMENT PROGRAM.

STATUS:
THIRD YEAR OF GRANT.

ACCOMPLISHMENTS:

TWO ANISTROPIC CONSTITUTIVE MODELS FOR PWA 1480 HAVE BEEN DEVELOPED AND INCORPORATED IN A
FINITE ELEMENT CODE.

A HIGH-TEMPERATURE BIAXIAL COMPUTER CONTROLLED TEST CAPABILITY EXISTS AT THE UNIVERSITY OF

CONNECTICUT.

A DATA BASE ON PWA 1480 IS BEING GENERATED.

COMPLEX BIAXIAL VERIFICATION TESTS HAVE BEEN INITIATED.
C0-86-22331

Figuce 4
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CONTITUTIVE MODELING OF INELASTIC ANISOTROPIC
MATERIAL RESPONSES

OBJECTVE:
DEVELOP A WORKABLE CONSTITUTIVE MODEL THAT PREDICTS THE INELASTIC STRUCTURAL RESPONSES

OF SINGLE-CRYSTAL ALLOYS USED IN GAS TURBINE ENGINE BLADES AND VANES.

GRANT:

UNIVERSITY OF CINCINNATI (NAG3-511).

APPROACH:
• DEVELOPMENT DIRECTED TOWARD ANISTROPIC, NICKEL-BASE SUPER ALLOYS FOR TURBINE BLADES

AND VANES.

• A DATA BASE OF ISOTHERMAL CYCLES UNIAXIAL BEHAVIOR WILL BE OBTAINED FOR RENE N4.

• AN AUTOMATED PROCEDURE(CODE) FOR OBTAINING MATERIAL CONSTANTS WILL BE DEVELOPED.

• THE MODEL WILL BE INCORPORATED IN A NONLINEAR FINITE ELEMENT CODE AND EXCERCISED ON A

TURBINE BLADE PROBLEM.

STATUS:
THIRD YEAR OF GRANT.

ACCOMPLISHMENTS:
• AN ANISTROPIC CONSTITUTIVE MODEL FOR RENE N4 HAS BEEN DEVELOPED AND INCORPORATED IN A

FINITE-ELEMENT CODE.

• A CODE TO DETERMINE THE MATERIAL CONSTANTS FROM EXPERIMENTAL DATA HAS BEEN DEVELOPED.

• A HIGH-TEMPERATURE UNIAXIAL COMPUTER CONTROLLED TEST CAPABILITY EXISTS AT THE UNIVERSITY

OF CINCINNATi,

• TESTING TO ESTABLISH A LARGE OUALTIY DATA BASE FOR RENE N4 AT TEMPERATURES OF 1400, 1600,

AND 1800 OFHAS BEEN INITIATED. c_-_2,

Figure 5

MULTIAXIAL TEST PROGRAM TO DETERMINE SURFACES
OF CONSTANT CONSTANT INELASTIC STRAIN RATE

AT ELEVATED TEMPERATURE

OBJECTIVE:
PROVIDE HIGH-TEMPERATURE BIAXIAL EXPERIMENTAL DATA TO ASSIST IN THE FORMULATION OF
NONLINEAR CONSTITUTIVE MODELS FOR STRUCTURAL ALLOYS USED IN TURBINE ENGINE HOT-SECTION

COMPONENTS.

INTERAGENCY AGREEMENT:

OAK RIDGE NATIONAL LABORATORY.

APPROACH:
• COMPUTER CONTROLLED BIAXlAL (TENSION TORSION) TESTS AT A TEMPERATURE OF 650 °C ON A

REFERENCE HEAT OF TYPE 316 STAINLESS STEEL WILL BE CONDUCTED.

• REFERENCE TESTS ON INCONEL 718 WILL BE CARRIED ON AT 950 °C.

• SURFACES OF CONSTANT INELASTIC STRAIN RATE WILL BE GENERATEDAND DATA STORED IN A

COMPUTER.

• A HIGH TEMPERATURE BIAXIAL EXTENSOMETER WILL BE EVALUATED.

STATUS:

SECOND YEAR OF AGREEMENT.

ACCOMPLISHMENT:
• EVALUATION OF A HIGH-TEMPERATURE EXTENSOMETER HAS BEEN COMPLETED.

• SURFACES OF CONSTANT INELASTIC STRAIN RATE ARE BEING GENERATED. SOFTWARE FOR STORAGE,

TRANSFER, REDUCTION, AND ANALYSIS OF DATA HAS BEEN DEVELOPED.
CO _22323

Figure 6
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OF POOR QUALITY HIGH-TEMPERATURE STRUCTURES LABORATORY

OBJECTIVE:

PROVIDE HIGH-TEMPERATURE UNIAXIAL AND BIAXIAL EXPERIMENTAL DATA ON CYLINDRICAL SPECIMENS

TO ASSIST IN THE FORMULATION, DEVELOPMENT, AND VERIFICATION OF NEW AND IMPROVED CONSTITUTIVE
MODELS AND TO EVALUATE ADVANCED INSTRUMENTATION ISOTROPIC AND ANISOTROPIC.

IN HOUSE

APPROACH:

• COMPUTER CONTROLLED UNIAXIAL AND BIAXIAL (TENSION/TORSION) TEST MACHINES WILL BE USED TO
PROVIDE EXPERIMENTAL DATA.

• RADIOFREQUENCYAND AUDIOFREQUENCY INDUCTION HEATERS WILL BE USED TO HEAT SPECIMENS TO
DESIRED TEMPERATURES.

• DATA WILL BE STORED ON COMPUTERS FOR FUTURE DATA REDUCTION, ANALYSIS, AND DISPLAY.

• LARGE QUALITY DATA BASES, BOTH ISOTHERMAL AND NONISOTHERMAL, WILL BE OBTAINED AND HIGH-
TEMPERATURE BIAXIAL EXTENSOMETERSWILL BE EVALUATED.

STATUS:
COMPLETED FOURTH YEAR.

ACCOMPLISHMENTS:

,, GENERATED LARGE QUALITY UNIAXlAL DATA BASE, BOTH CYCLIC ISOTHERMAL AND NONISOTHERMAL,
FOR HASTALLOY-X.

• DEVELOPED SOFTWARE FOR DETAILED ANALYSIS OF DATA,

• DEMONSTRATED THAT COMPUTER CONTROLLED BIAXIAL TEST MACHINES FOR HIGH-TEMPERATURE
TESTING ARE OPERATIONAL.

• EVALUATION OF A HIGH-TEMPERATURE BIAXIAL EXTENSOMETER HAS BEEN COMPLETED.

• HIGH-TEMPERATURE TORSIONAL TESTING IN UNDERWAY.
co_6-2232e

HIGH TEMPERATURE FATIGUE & STRUCTURES LABORATORY

p HCF-LCF TESTING FACILITIES

UNIAXlAL & MULTIAXlAL TESTING FACILITIES

COMPUTER &INSTRUMENTATION SYSTEMS

Figuce 8
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BENCH TOP RIG

OBJECTIVE:

PROVIDE HIGH-TEMPERATURE EXPERIMENTAL DATA ON FLAT PLATES TO ASSIST IN THE DEVELOPMENT AND

VERIFICATIONOF NEW AND IMPROVED STRUCTURAL ANALYSIS AND LIFEPREDICTION TOOLS AND TO

EVALUATE ADVANCED INSTRUMENTATION.

IN HOUSE

APPROACH:

• A QUARTZ LAMP HEATING SYSTEM IS USED TO IMPROVE METAL TEMPERATURES SIMILAR TO AN

IN-SERVICELINER ON 5 BY 8 IN.FLAT PLATES.

• A 2-3 MIN THERMOANALYSIS SIMULATES A 3-4 HR ENGINE MISSION CYCLE.

• POWER SETTINGS, COOLING AIR FLOW ROLES, AND COOLING TEMPERATURES ARE VARIED TO MATCH A

DESIRED TEMPERATURE HISTORY ON A LIST PLATE.

• ADVANCED TEMPERATURE, DEVELOPMENT AND STRAIN MEASUREMENT SYSTEMS ARE EVALUATED.

• AN AUTOMATED DATA ACQUISITION SYSTEM IS USED TO STORE, REDUCE, AND DISPLAY THE DATA.

STATUS:

COMPLETED FOURTH YEAR.

ACCOMPLISHMENTS:

• DEMONSTRATED THAT TEST RIG ISA VIABLE STRUCTURAL COMPONENT EXPERIMENTAL TOOL.

• INFRARED THERMOVISION SYSTEM HAS PROVIDED TEMPERATURE MAPS OF COOL SURFACE OF TEST

PLATE.

• EVALUATED A UTRC LASER SPECKLEGRAM SYSTEM TO MEASURE STRAINS.

EVALUATED A HIGH-RESOLUTION CAMERA SYSTEM TO MEASURE DISPLACEMENTS.

• PLATE TEMPERATUARES WERE REPEATABLE FROM CYCLE TO CYLE

• THERMAL/STRUCTURAL ANALYSIS OF PLATES HAVE BEEN PERFORMED

Figure 9

BENCH.TOPRIG

I

Figure I0
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STRUCTURAL COMPONENT RESPONSE RIG

OBJECTIVE:

PROVIDE HIGH-TEMPERATURE EXPERIMENTAL DATA ON COMBUSTDR LINER SEGMENTS TO ASSIST IN THE

DEVELOPMENT AND VERIFICATION OF NEW AND IMPROVED STRUCTURAL ANALYSIS AND LIFE-PREDICTION
TOOLS_ AND TO EVALUATE ADVANCED INSTRUMENTATION,

COOPERATIVE NASA LEWIS AND PRATT & WHITNEY EFFORT.

APPROACH:

• A QUARTZ LAMP HEATING SYSTEM IS USED TO IMPOSE METAL TEMPERATURES ON A 20 IN. DIAMETER
TEST LINER SIMILAR TO AN IN-SERVICE LINER.

• A 2-3 MIN. THERMAL CYCLE SIMULATES THE TAKEOFF. CRUISE, LANDING, AND TAXI MODES OF A 3-4 HR
ENGINE MISSION CYCLE.

• POWER SETTINGS, COOLING AIRFLOW RATES, AND COOLING AIR TEMPERATURES ARE VARIED TO MATCH
A DESIRED TEMPERATURE HISTORY OF A POINT ON THE TEST LINER.

• BOTH THERMOCOUPLES AND AN INFRARED CAMERA SYSTEM ARE USED TO MEASURE SURFACE METAL
TEMPERATURES.

• DISPLACEMENT MEASUREMENTS AT CRITICAL LOCATIONS ON THE TEST LINER ARE OBTAINED.

• AN AUTOMATED DATA ACQUISITION SYSTEM IS USED TO STORE, REDUCEAND DISPLAY THE DATA.

STATUS:

COMPLETED FOURTH YEAR.

ACCOMPLISHMENTS:

• DEMONSTRATED THAT TEST RIG IS A VIABLE STRUCTURAL COMPONENT EXPERIMENTAL TOOL.

• COMPLETED LISTING OF A CONVENTIONAL COMBUSTOR LINER SEGMENL

• LINER CRACKING AT THE SEAM WELD WAS OBSERVED AFTER 1600 THERMAL CYCLES.

• TESTING WAS STOPPED AFTER 1800 THERMAL CYCLES DUE TO LARGE LINER DISTORTION.

• RAISING LINER MAXIMUM TEMPERATURE BY lO0oF ACCELERATED DAMAGE.

• LINER TEMPERATURES WERE REPEATABLE FROM CYCLE TO CYCLE.

• LARGE QUALITY DATA BASE INCLUDING TEMPERATURE DISPLACEMENT MEASUREMENTS WAS OBTAINED.

• THERMAL STRUCTURAL: ANALYSIS OF THE LINER HAS BEEN PERFORMED
CD-eE-22330

Figure II

PAGE IS
QUALITY

STRUCTURALCOMPONENTRESPONSERIG

Figure 12
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COMBUSTORTESTLINER AFTER1280 THERMALCYCLES

L
Figure 13

THERMAL-TO-STANDARD DATA TRANSFER MODULE

OBJECTIVE:
DEVELOP AN AUTOMATED PROCEDURE FOR EFFICIENT AND ACCURATE TRANSFER OF TEMPERATURES FROM
A HEAT TRANSFER CODETO A STRUCTURAL ANALYSIS CODE,

CONTRACT:
GENERAL ELECTRIC (NAS3-23272).

APPROACH:
DEVELOP A CODEWITH THE FOLLOWING FEATURESAND CAPABILITIES: MODULAR, USER FRIENDLY, DIFFERENT

3D MESH DENSITIES, BOTH FINITE-ELEMENT AND FINITE DIFFERENCE HEAT TRANSFER CODES, EFFICIENT 3D
SEARCH AND WEIGHTING ROUTINES, HARD-WIRED THERMAL AND STRUCTURAL CODES, FILES TOEASILY ACCESS

OTHER CODES WINDOWING, ALIGNMENT OF HEAT TRANSFER AND STRESS MODES, EXTERIOR STRESS POINT
BY AN OUTSIDE HEAT TRANSFER MODEL, AND ABILITY TO SELECT A TIME SLIP FROM A LARGE TRANSIENT

THERMAL ANALYSIS.

STATUS:

COMPLETED.

ACCOMPLISHMENTS:
• FINAL REPORTS HAVE BEEN COMPLETED.

• OVER 30 USERS HAVE A COPY OF THE CODE FOR USE AND EVALUATION.

• CODE HAS BEEN SENT TO COSMIC.

Figure 14
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OVERALLPROGRAMSCHEMATICFOR

3-DIMENSIONALTRANCITS(HOST)
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FiEure 15

COMPONENT-SPECIRCMODELING(HOST)

FiEure 16
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COMPONENT'S SPECIFIC MODELING (COSMO)

OBJECTIVE:
DEVELOP/VERIFY INTERDISCIPLINARY MODELING ANALYSIS METHODS AND REQUISITE COMPUTER CODES

STREAMLINED FOR THREE HOT-SECTION COMPONENTS.

CONTRACTOR:

GENERAL ELECTRIC BUSINESS GROUP (NAS3-23687)+

APPROACH:
• AVAILABLE METHODS FOR GAS DYNAMICS, HEAT TRANSFER 3D INELASTIC.

• ANALYSES AND MODELING TECHNIQUES REQUIRED TO COMPUTATIONALLY VALIDATE HOT-SECTION

COMPONENT DESIGNS WILL BE MODIFIED.

• EXTENDED AND INTEGRATED INTO A MODULAR COMPUTER CODE (COSMO) VIA A TWO-PHASE

INCREMENTALLY FUNDED CONTRACT

STATUS:

THE FIRST PHASE (BASE PROGRAM) OF COSMO IS NEAR COMPLETION.

ACCOMPLISHMENTS:

THE THERMODYNAMIC, THERMOCHEMICAL LOAD TRANSFER, AND EXECUTIVE MODULES ARE OPERATIONAL
ON THE LEWIS CRAY COMPUTER.

CO B6-_2"J_2

Figure 17

CONSTITUTIVE MODELING FOR ISOTROPIC MATERIALS

OBJECTIVE:
TO DEVELOP UNIFIED CONSTITUTIVE MODEL FOR FINITE-ELEMENT STRUCTURAL ANALYSES OF TURBINE-ENGINE

HOT-SECTION COMPONENTS.

CONTRACTOR:

SOUTHWEST RESEARCH INSTITUTE (NAS3-23925.)

APPROACH:
• DEVELOPMENT IS DIRECTED TOWARD ISOTROPIC, CAST NICKEL-BASE ALLOYS FOR AIR-COOLED TURBINE

BLADES AND VANES.

• A DATA BASE OF CYCLIC UNIAXIAL AND MULTIAXtAL BEHAVIOR WILL BE OBTAINED FOR A BASE MATERIAL

(B1900) AND AN ALTERNATE MATERIAL (MAR M247).

• EFFICIENT METHODS FOR OBTAINING MODEL CONSTANTS WILL BE DEVELOPED.

• MODELS WILL BE tNCORPOATED IN FINITE-ELEMENT CODE AND EXERCISED ON A BLADE AIRFOIL PROBLEM,

STATUS:
• THE BASE PROGRAM HAS BEEN COMPLETED.

• AN OPTIONAL PHASE OF THE PROGRAM IS UNDERWAY IN WHICH THE ALTERNATE MATERIAL WILL BE
STUDIED AND MODEL DEVELOPMENT WILL BE EXTENDED TO INCLUDE COATING, GRAN SIZE, AND THERMAL

HISTORY EFFECTS. IF NECESSARY.

ACCOMPLISHMENTS:
• UPDATED VERSIONS OF THE BODNER AND WALKER MODELS, WITH COMPATIBLE NUMERICAL INTEGRATION

SCHEMES WERE INCORPORATEDIN THE MARC CODE

• THESE WERE EXERCISED IN SIMULATIONS OF A LARGE NUMBER OF CYCLIC TESTS WITH GENERALLY

GOOD RESULTS.

• FOR THE FIRST TIME UNIFIED CONSTITUTIVE MODELS HAVE BEEN APPLIED TO THE CYCLIC STRUCTURAL

ANALYSIS OF AN ENGINE HOT SECTION COMPONENr.
CO- ee. 22329

Figure 18

29



3-D INELASTICANALYSIS(HOST)

Figure 19

THREE-DIMENSIONAL INELASTIC ANALYSIS METHODS FOR
HOT-SECTION COMPONENTS-I

OBJECTIVE:

DEVELOP NEW ANALYTICAL METHODS THAT PERMIT MORE ACCURATE AND EFFICIENT STRUCTURAL ANALYSIS
FOR COMBUSTER LINERS, TURBINE BLADES AND VANES.

CONTRACTOR:
PRATT & WHITNEY.

APPROACH:

PROVIDE A SERIES OF NEW COMPUTER CODESTHAT EMBODY PROGRESSIVELYMORE SOPHISTICATEDANALYSIS
CAPABILITIES BASED ON:

• AN APPROXIMATE MECHANICS OF MATERIALS FORMULATION (MDMM)

• A STATE-OF-THE-ART, SPECIAL FINITE-ELEMENT FORMULATION (MHOST)

• AN ADVANCED TECHNOLOGYBOUNDARY-ELEMENT FORMULATION (BEST3D).

STATUS:
PROGRAM IN FOURTH YEAR.

ACCOMPLISHMENTS:

• COMPUTER CODES GENERATING WIDESPREAD INTEREST IN GOVERNMENT/INDUSTRY/UNIVERSITY SECTORS.

• FIRST USERS WORKSHOP HELD IN JUNE 1985.

• PRELIMINARY VERSIONS DISTRIBUTED FOR EARLY EVALUATION.

• SECOND USERS WORKSHOP ANTICIPATED FOR LATE 1987,
CD_86-22327

FiEure 20

3O



THREE-DIMENSIONALINELASTICANALYSISMETHODS
FORHOTSECTIONCOMPONENTS-II

OBJECTIVE:
DEVELOP IMPROVED ANALYSIS TOOLS THAT ALLOW MORE ACCURATE AND EFFICIENT CHARACTERIZATION OF
THE CYCLIC TIME DEPENDENT PLASTICITY OCCURRING IN HOT-SECTION COMPONENTS

CONTRACTOR:
GENERAL ELECTRIC.

APPROACH:
PROVIDE A MATRIX OF FINITE-ELEMENT-BASED CODES WITH VARYING SOPH1SITICATIONRELATIVE TO

• ELEMENT TYPE FORMULATION

• MATERIAL CONSTITUTIVE MODEL REPRESENTATION SHARING A COMMON EMPHASIS ON EFFICIENT

SOLUTION ALGORITHMS.

STATUS:

PROGRAM COMPLETED,

ACCOMPLISHMENTS:
• CODE EVALUATION UNDERWAY AT LEWIS.

• USERS WORKSHOP ANTICIPATED FOR LATE 1986.

• CODE DISTRIBUTION THROUGH COSMIC ANTICIPATED IN EARLY 1987.

FiEuce 21
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FATIGUE AND FRACTURE OVERVIEW

Gary R. Halford

NASA Lewis Research Center

Cleveland, Ohio

The programs in the fatigue and fracture area of the HOST Project have

developed to the point that we can now refer to accomplishments rather than goals.

This has necessitated a change from the overview format that I've used in the past

couple of years. This year, for each program, I will briefly discuss the major

accomplishments, the on-going work, and any that remains for the future. A list of

the programs currently supported under fatigue and fracture is shown in table I.

There are three contract programs, one grant, and an in-house activity. As I look

back over the past few years, it is gratifying to see the advances that have been

achieved. Indeed, we now know more about how to design for greater durability, and

we are better equipped with analysis tools and hardware for performing durability

studies - these advances will be noted as accomplishments. We are also in our prime

performance period, during which advances come more easily than before - these

advances will be mentioned as on-going work, and greater detail will be provided by

the individual presenters. Finally, numerous tasks remain to be accomplished in the

future.

Figure I summarizes the accomplishments achieved under the isotropic

creep-fatigue crack initiation life prediction program. This program was handled by

Pratt & Whitney under contract NAS3-23288. Dr. Vito Moreno was the original project

manager, and Mr. Richard Nelson took over about 2 years ago. To date, a sizeable

creep-fatigue crack initiation data base has been generated on the nickel-base

superalloy, B-1900. Companion constitutive modeling programs have also generated

extensive data bases on the same heat of material. The crack initiation results

have formed the basis of a new approach to creep-fatigue life prediction. The term

CDA (Cyclic Damage Accumulation) has been coined for the method, which has been

evaluated under isothermal, uniaxial conditions. Stringent laboratory verification

experiments have been used to test the accuracy of the method. Considering the

quite limited material property data needed to evaluate the constants in the

approach, the prediction accuracy is acceptable. At the expense of the larger data

base required, the Lewis developed total strain - strainrange partitioning method

(TS-SRP) is capable of a higher degree of accuracy. Details of both the CDA and the

TS-SRP methods can be found in reference I.

The current work will be described in greater depth in the Fatigue and Fracture

Session by Mr. Nelson. Suffice it to say here that the work is concentrating on the

development of modules to account for multiaxial loading, complex loading histories

(i.e., cumulative fatigue damage) and thermomechanical loading. Color graphics

(fig. 2) of the temperature and stress and strain distributions are quite revealing

to the designer in pinpointing hot spots and concentrations of potential damage.

Future activities under the contract call for the development of modules to

deal with environmental attack, protective coatings, and mean stress (fig. 3).

These modules will be integrated into the master life-prediction model, and
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laboratory verification of the completed model will be achieved through use of an

alternative alloy. Inco 718 will be used for verification purposes.

The isotropic high-temperature crack growth program at the General Electric

Company, under the direction of Dr. J.H. Laflen, has reached a couple of significant

milestones. Following a great deal of analysis and experimentation, a satisfactory
crack-growth specimen geometry has been selected (fig. 4) that can provide the

reliable cyclic growth results needed in the program. Also, numerous so-called

path-independent integrals J(x) have been screened to determine their applicability

to high-temperature crack propagation problems. Three approaches have been shown to

adequately capture the stress intensity around a loaded crack in a thermal gradient

field (fig. 5). Greater detail of the path-independent integral approach for

high-temperature crack growth will be presented by General Electric in the Fatigue

and Fracture Session. Future work will concentrate on finalizing the cyclic crack

growth computer code and on verifying the code through use of an alternate

material/specimen geometry.

Figure 6 summarizes the major accomplishments under the anisotropic cyclic

crack initiation and constitutive modeling program of Pratt & Whitney under the

direction of Mr. Gus Swanson. Work has concentrated on developing the cyclic
constitutive model applicable to material response before crack initiation. A

workable single-crystal constitutive model has been developed and integrated into a

computer code. Based on the classical Schmid law for critical resolved shear stress

and upon the unified constitutive modeling theory of Dr. Kevin Walker, the

anisotropic constitutive model has proven itself to be powerful tool for the

analysis of high-temperature components such as turbine blades. Verification of the

model has been achieved at the laboratory specimen level. A composite computer-

generated plot of a cyclic stress-strain hysteresis loop of single crystal PWA I_80

and of its PWA 286 overlay coating is shown in figure 6. Note the nominally elastic

response of the PWA 1480 and the elasto-plastic-creep response of the much weaker,

ductile coating.

Currently, the crack initiation data base is being generated upon which the

life-prediction method will be built. Both isothermal low-cycle fatigue and

thermomechanical fatigue experiments are being conducted. Results are also being

collected on the behavior of PWA 273, an aluminide coating. Preliminary evaluations

of existing life-prediction methods are being made. Some of the complexities of

this task are illustrated by the sketch in figure 7.

The root attachment area of single-crystal turbine blades (fig. 8) poses

additional complexities that are to be addressed later in the program. As a final

note, the life models for the root attachment area and the higher-temperature

airfoil region will have to be integrated into a single life-prediction that can be

interfaced with the cyclic constitutive modeling programs for an overall analysis of

gas turbine blades.

Figure 8 illustrates the significant accomplishments of the basic research

grant with Prof. H.W. Liu at Syracuse University. From a phenomenological

viewpoint, he has developed a parameter, based on _J, that accurately describes

fatigue crack growth under large-scale plastic yielding. An indication of the

predictive capabilities is given in figure 9. Seven different alloys are included,

and the normalized growth rates cover four orders of magnitude. Details of this

room temperature work are contained in reference 2. In his attempts to gain a

better understanding of the micromechanisms of cyclic crack growth at elevated

temperatures, he has proposed a model based on the oxidation kinetics at the growing
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crack tip. The model provides for a transistion between the time-independent

plasticity-induced crack growth and the time-dependent oxidation--governed growth.

More detail will be provided by Prof. Liu in his presentation in the Fatigue and

Fracture Session. Work is continuing on modeling of the micromechanisms of

crystallographic slip at the tip of a growing crack. The effort is directed at the

so-called small crack problem, and, to make the problem easier to address experimen-

tally, specimens with extremely large grain sizes have been manufactured. A typical

specimen is shown in figure I0 wherein only two or three grain boundaries are

encountered as the crack grows across the specimen.

Lewis' in-house effort focused principally on the refurbishment of the

high-temperature fatigue and structures laboratory. This facility is now

operational and growing daily. To date, we have been able to add seven new

closed-loop, servo-controlled cyclic testing machines, each of which is capable of

being interfaced with dedicated satellite minicomputers which, in turn, communicate

with the master computer in the centralized control room. A view of part of the new

control room is shown in figure II. Experiments are now being performed on a

routine basis that just could not have been attempted a couple of years ago. Our

computer-aided capabilities are constantly growing as the available software

continues to expand. Over the new few years, we expect to be generating valuable

theory verification using the multiaxial, thermomechanical, and cumulative damage

test equipment that is now coming on-line.

In summary, I would like to emphasize the significant progress that has been

achieved in the fatigue and fracture arena through the atmosphere created by the

HOST Project. Unquestionably, we are now better prepared than ever before to deal

with durability enhancement in the aeronautical propulsion industry through

theoretical, analystical, and experimental approaches. Given the opportunity to

complete the tasks we have started, we expect to reap even greater rewards over the

next year or two.

REFERENCES

I. Moreno, V.; Nissley, D.M.; Halford, G.R.; and Saltsman, J.F.: Application of

Two Creep Fatigue Life Models of the Prediction of Elevated Temperature Crack

Initiation of a Nickel Base Alloy. Presented at the AIAA/SAE/ASME/ASEE 21st

Joint Propulsion Conference, Monterey, Calif., July 8-10, 1985. Preprint No.

2. Minzhong, Z and Liu, H.W.: Crack Tip Field and Fatigue Crack Growth in General

Yielding and Low Cycle Fatigue. (Syracuse University, NASA Grant NAG3-348),

NASA CR-174686, Sept. 1984.
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FATIGUE AND FRACTUREPROGRAMS

• NAS3-23288, PRATT & WHITNEY (R.S. NELSON), LEWIS (G.R. HALFORD)
CREEP-FATIGUE CRACK INITIATION--ISOTROPIC

• NAS3-23940, GENERAL ELECTRIC (J.H. LAFLEN), LEWIS (T.W. ORANGE)
ELEVATED TEMPERATURE CRACK GROWTH--ISOTROPIC

• NAS3-23939, PRATT & WHITNEY (G.A. SWANSON), LEWIS (R.C. BILL)
LIFE PREDICTION/CONSTITUTIVE MODELING--ANISOTROPIC

• NAG3-348, SYRACUSE UNIVERSITY (H.W. LIU), LEWIS (l.J. TELESMAN)
CRACK GROWTH MECHANISMS--ISOTROPIC

• LEWIS,(M.A. McGAW)
HIGH-TEMPERATURE FATIGUE AND STRUCTURES LABORATORY

CD-86-21881

CREEP-FATIGUECRACKINITIATION--ISOTROPIC
ACCOMPLISHMENTS

• LARGE DATA BASE
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• CDA MODEL-P&W
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Figure I
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CREEP-FATIGUECRACK INITIATION--ISOTROPIC
CURRENT

LOAO

• MULTIAXIAL LOADING

• COMPLEXLOADINGHISTORY

• THERMOMECHANICALLOADING

LEADIN
EDGE_-

TEMPERATURE STRAIN STRESS

FiEure 2
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CREEP-FATIGUECRACKINITIATION--ISOTROPIC
FUTURE

• ENVIRONMENTAL MODULE

• COATINGS MODULE

• MEAN STRESS MODULE

• MODULES INTEGRATED INTO MODEL

• ALTERNATIVE ALLOY VERIFICATION

LOAD
COATING

MR. OXIDATION

Figure 3

CD_6-21873

CRACKGROWTH--ISOTROPIC
ACCOMPLISHMENTS

• DEVELOPED STANDARDIZED CRACK
GROWTH SPECIMEN

• PATH-INDEPENDENT INTEGRALS (Jx)
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CD-86-21868

Figure 4
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CRACKGROWTH--ISOTROPIC
CURRENT

• ISOTHERMAL VERIFICATION

• NONISOTHERMAL VERIFICATION

Jx
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J-KISHIMOTO
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-- J-AINSWORTH

J-BLACKBURN

TADA
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I I I I
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Figure 5

1200 °F

1000 OF

CD-86-21866

INITIATION AND CONSTITUTIVEMODELING--ANISOTROPIC
ACCOMPLISHMENTS

• SINGLE-CRYSTALCONSTITUTIVEMODEL(PWA 1480)

- SCHMID LAW

- WALKERTHEORY STRESS

• OVERLAYCOATINGCONSTITUTIVEMODEL(PWA 286)

- WALKERTHEORY

OVERLAYCOATING
(PWA .r PWA 1480

MECHANICALSTRAIN

Figuce 6
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INITIATION AND CONSTITUTIVEMODELING--ANISOTROPIC
CURRENT

• LCF/TMF DATA BASE (COATED PWA 1480)

• ALUMINIDE COATING DATA BASE (PWA 273)

• PRELIMINARY LIFE MODELS

<001>
/-CRACK

• • I SUGSTRATEJ_ '_,SOTROP,C
CD-_2_8,o COATING

Figure 7

INITIATION AND CONSTITUTIVEMODELING--ANISOTROPIC
FUTURE

• BLADE ATTACHMENT

• INTEGRATED LIFE MODELS
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CRITICALFOR // I ""

DURABILITY--_. FIRTREEREGION

"_- COOLING
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//r DAMPERCAVITY

NECKREGION
t ROOTATTACHMENT
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CD-86-21865

Figure 8
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ACCOMPLISHMENTS
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Figure 9
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OF POOR QUALITY

HIGH-TEMPERATUREFATIGUE AND STRUCTURESLABORATORY
ACCOMPLISHMENTS

• INTEGRATED/AUTOMATED MATERIALS TESTING CAPABILITY

- SEVEN NEW CLOSED-LOOP MACHINES

- ONE HOST COMPUTER

- 16 SATELLITE MINICOMPUTERS

FiEure II CD-86-21859
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HOST SURFACE PROTECTION R&T OVERVIEW

Robert A. Miller

NASA Lewis Research Center

Cleveland, Ohio

Most of the efforts in the HOST Surface Protection Subproject were focused on

thermal barrier coating (TBC) life prediction in fiscal year 1986 (fig. I). Also,

small effort - consisting primarily of wrapping up and reporting the work of

previous years - remained on the airfoil deposition modeling. The metallic coating

life prediction program, which had been an element in the surface protection

subprogram in previous years, was not continued into FY 1986.

The TBC life prediction element is divided into contractural, grant, and

in-house efforts (fig. 2). The contracts - with Pratt & Wlaitney Aircraft, General

Electric Co., and the Garrett Turbine Engine Co. - were designed to produce

"engine-capable" TBC life-prediction models. The grant with Cleveland State

University is focused on finite element modeling of TBC stress states. The in-house

work is focused primarily on developing laboratory burner rig tests that can

simulate the pressures and heat fluxes of aircraft gas-turbine engines.

AIRFOIL DEPOSITION MODEL

The work performed under the airfoil deposition modeling program element in

FY 1986 is outlined in figure 3. This effort was concerned with modeling the

deposition of corrodants onto turbine airfoils. Accomplishments included verifi-

cation of the chemically frozen boundary (CFBL) theory, which had been developed in

previous years at Yale University under HOST and other NASA programs. Encouraging

results were also received with the recently developed local thet_ochemical

equilibrium (LTCE) theory.

THERMAL-BARRIER-COATING LIFE PREDICTION

Most of the FY 1986 surface protection subprogram was devoted to thermal-

barrier-coating life modeling. This modeling is an essential step in the develop-

ment of TBC's. This is because the full benefits of TBC's can only be achieved when

it becomes possible to use them in the "prime-reliant" mode. An uncoated airfoil

cannot survive the temperatures that are encountered in this environment. There-

fore, a failed TBC would lead directly to a failed component. As noted in figure 4

TBC life prediction models combined with other advances in coatings technology will

be required before designers will be willing to use TBC's in the prime reliant mode.

Figure 5 shows that the TBC life modeling contracts are divided into two

phases. Currently, each of the three contractors is in the third and final year of

phase I. The output of phase I will be a preliminary model. The output of the

second phase will be a design-capable model. The modeling strategy is indicated in

figure 6. Figure 5 also shows how the mechanical behavior of TBC's program is

focused on the modeling of TBC residual stresses. The in-house rig/engine
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correlation work is aimed at high pressure burner rig development as is shown in
figures 5 and 7.

TBC HOST FY 1986 accomplishments are shown in figure 8. These include the

development and initial verification of a preliminary life model by one of the

contractors (Pratt & Whitney Aircraft). Coating mechanical and thermal properties

have been determined. Failure mechanisms have been ellucidated. Stresses have been

modeled by finite element methods. Also, NDE methods have been evaluated, and an

engine test has been conducted (by the Garrett Turbine Engine Co.).
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GOAL:

APPROACH:

STATUS:

AIRFOILDEPOSITIONMODEL

• TO DEVELOP AND VERIFY A MODEL TO PREDICT CORRODANT DEPOSITION QUANTITY

AND LOCATION ON TURBINE AIRFOILS

• AIRFOIL MODEL DEVELOPMENT VIA GRANT WITH DAN ROSNER, YALE

• MODEL VERIFICATION VIA IN HOUSE RESEARCH WITH SUPPORT FROM GOKOGLU

• MACH 0.3 BURNER RIG

• HIGH PRESSURE BURNER RIG

• BURNER RIG MODERNIZATION

• COMPUTER DATA ACQUISITION AND LIMIT MONITORING

• COMPUTER CONTROL

• CFBL THEORY VERIFIED FOR SEGMENTED COLLECTORS SIMULATING TURBINE NOSE

REGION

• LTCE THEORY, RECENTLY DEVELOPED, WHICH ASSUMES LOCAL THERMOCHEMICAL

EQUILIBRIUM AS OPPOSED TO FROZEN CHEMISTRY (CFBL THEORY), AGREES

TO WITHIN 7% IN PREDICTING DEPOSITION RATES
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• RIG OPERATIONAL
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FURTHER DEVELOPMENT OF THE
DYNAMIC GAS TEMPERATURE MEASUREMENT SYSTEM*

D. L. Elmore, W. W. Robinson, W. B. Watkins

Pratt & Whitney Engineering Division

INTRODUCTION

The objective of this effort was to experimentally verify a dynamic gas
temperature measurement system in laboratory experiments. In previous work
(Ref. i) a measurement system was developed for gas turbine combustor exhausts,
with special emphasis placed on dynamic response to enable determination of
fluctuating components. The measurement probe was demonstrated to have greater
than one hour life in a jet engine combustor, and very long (>5 hours) life in
an atmospheric burner. Under the current program the measurement and
compensation methods were verified by comparing the results obtained by the
compensated dynamic sensors with those of a fine-wire resistance thermometer of
intrinsically high frequency response. Two signal sources were used: i) a
rotating wheel which alternately directed hot and cold gas streams at the
sensors and 2) an atmospheric pressure kerosene/air burner. A commercially
available optical fiber thermometer was tested for dynamic response in the
burner experiment.

The following sections describe the dynamic gas temperature measurement
system verification program. A brief descriptio_ of the sensor geometry and
construction is followed by a discussion of the probe heat transfer analysis
and subsequent compensation method. The laboratory experiments are described
and experimental results are discussed. Finally, directions for further
investigation are given.

PROBE DESCRIPTION

The dynamic temperature probe concept is shown in Figure 1. The probe

employs two thermocouples of different wire diameters positioned in close

proximity. The thermoelements are large enough in diameter that frequency

response above a few Hertz is limited by thermal inertia. When the
thermocouples are exposed to the same instantaneous temperature and velocity in

the gas stream, the difference in thermal responses will be governed by

convective effects (proportional to wire diameter) and conductive effects

(proportiona3 to specific heat, thermal conductivity and wire length). Many

previous studies (Refs. 2 and 3) used thermoelements of sufficiently large

(_i00) length-to-diameter ratio that conduction effects may be neglected, and

compensations were based on first-order convective time constants. The present

sensor, however, is designed for engine hot-section applications, and the

*Work performed under NASA Contract NAS3-24228
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smaller le_gth-_o-diameter ratios required for structural adequacy necessitates

inclusion of transient conduction effects in the compensation method.

A novel feature of each thermocouple is the beadless, butt-welded

thermoelement. The beadless construction allows the sensor to be modelled as a

cylinder in crossflow, which simplifies the model considerably. ISA type B

(Pt/6Rh - Pt/3ORh) thermocouples were used for the burner tests and type K
(chromel-alumel) thermocouples were used for the rotating wheel tests.

PROBE THERMAL ANALYSIS AND COMPENSATION METHOD

The energy conservation equation describing convective and conductive heat
transfer to the thermocouples is

d2Tw (i)
dTw _ 4h9 (Tg - Tw) + _dt PwCpwd

The thermoelement and support wires were modelled with the nodal breakup shown
in Figure 2, and equation (I) is implemented in this model in finite difference

form to describe the temperature versus time history of the wire. Material

properties for the two t/c legs are averaged in these calculations. To

determine the thermocouple response to a given gas stream frequency component,

a sinusoidal temperature variation a(t) is used as a boundary condition on the

nodes exposed to the gas stream, and several cycles of gas stream temperature

are iterated. The true dynamic response of the wire is obtained when peak
response amplitudes change less than 0.1% from one-half-cycle to the next.

Comparisons between parametric modelling and experimental data are

required in the compensation scheme to determine an in situ value of hg and the
resulting compensation spectrum. This method is described as follows. Let the

calculated thermocouple and gas stream temperature dynamic amplitudes be
denoted by _i (f) and a(f), respectively, where i = i for the smaller

thermocouple and i = 2 for the larger thermocouple. Gas stream signal a(t) is

used as a boundary condition for nodes 0-9 and wire temperatures _i (t) are

calculated at discrete frequencies fn, over a practical frequency bandwidth

(usually 4 to 30 Hz). At each frequency fn signal amplitude ratio is
determined:

8i(fn)/a(fn) (2)

Note that _i(fn)/a(fn) forms a portion of the linear compensation spectrum in
the practical bandwidth; this spectrum may be extended to cover the bandwidth

of interest. Calculations are repeated for several values of the aerodynamic
parameter (Figure 3a)

0.48K9 Prl/3 u_I/2 (3)

r- (_)½ Pw Cpw

which provides aerodynamic scaling between the two different diameter

thermocouples (Ref. 1). Note that Fis proportional to an Hilpert equation

(Ref. 4) form of heat transfer coefficient hg for a cylinder in crossflow:
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PwCpw F : 0.48K 9 prl/3 Re1/2 (4)
hg - d_ d

Variation of F, therefore, corresponds to a variation in hq. At constant
values of F the ratio of the small and large diameter thermoco_ple responses
at given frequencies yields a calculated transfer function Hc (fn) (Figure 3b).

Hc(fn) : 82(fn)/81(fn) (5)

The experimental portion of the compensation method includes recording of
the two-wire probe signals, digitizing and converting to temperature using
appropriate calibration curves. Temperature versus time waveforms 8i, E(t) are
Fourier transformed to yield 8 i, _(f) and division of 82 by 81 yields an
experimental transfer function HE _f). Experimental and theoretical transfer
functions are compared; where the two match at the discrete frequencies in the
practical frequency bandwidth, experimental r's are then averaged, the
calculated 82(f)/ 81(f) associated with the average F is identified, thereby
identifying the calculated 81(f)/a(f), the compensation spectrum gain, and
_(f), the compensation spectrum phase, for the smaller thermocouple. The

calculated compensation spectrum is used over the bandwidth of interest (0-i
KHz). The compensated gas stream temperature spectrum is calculated by
dividing the experimentally-measured frequency spectrum by the calculated
thermocouple compensation spectrum.

a(f) : 8i,E(f)/(8i(f)/a(f))c (6)

These concepts have been reduced to practice in dynamic temperature sensor
compensation software. Fortran coding is used and the program is operational
on IBM computers with execution time of about 4 minutes per case.

EXPERIMENT

The rotating wheel experiment is shown in Figure 4. A drive assembly
consisting of electric motor and shaft was used to rotate a wheel plate which
had 8 holes on a 20.32 cm (8 inch) bolt circle diameter. Heated and ambient
temperature air was supplied to two tubes mounted close together on one side of
the rotating wheel and in-line with the holes' bolt circle diameter. As the
wheel rotated the holes passed the two air supply tubes and allowed hot and
cold air pulses to flow. A bifurcated manifold was placed on the opposite side
of the rotating wheel in-line with the supply tubes to collect the hot
(568K(563F)) and cold (289K(60F)) pulses and feed them into a transition
section which became a single circular tube. Hot and cold air pulses were
thereby delivered to the sensors mounted immediately downstream of the single
circular tube. The wheel was rotated to produce a 250 Hz narrowband signal.
Chromel-alumel thermocouples were used in the dynamic temperature sensor, and
an analog-compensated 6.4_m (.00025 inch) diameter fine wire resistance
thermometer was used as reference sensor.

An atmospheric pressure combustor with flowfield containing large
amplitude (several hundred degrees) temperature fluctuations was used as source
in the second experiment (Figure 5). An I159K (1626F) mean temperature test
point compared dynamic temperature sensors, a fine wire (12.7_m(.0005 in.)
diameter) resistance thermometer and compensated optical fiber thermometer
responses in the 0-i KHZ bandwidth. An 1655K (2519F) mean temperature point
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compared dynamic temperature sensor and optical fiber thermometer responses in

the same bandwidth. ISA type B thermocouples were used in the dynamic
temperature sensor.

RESULTS

A 20 Hz rotating wheel test point was used to derive the F for the 250 Hz

test point compensation. Compensated 6.4Mm (.00025 inch) resistance

thermometer and 76_m (.003 inch) thermocouple spectra are shown in Figure 6.
Compensated time-domain waveshapes are compared in Figure 7. The 76_m
thermocouple has been compensated approximately 28db at the fundamental

frequency; the resistance thermometer, however, required O.9db of compensation
due to its inherently higher response.

Figure 8 compares compensated 76_m (3 mil) and 127_m (5 mil)

thermocouples and 12.7Mm (.0005 mil) resistance thermometer spectra for the

atmospheric burner 1159K (1626F) test point. The compensated thermocouples

differ by 10% or less over the 0-I KHz bandwidth, whereas the 12.7#m
resistance thermometer is between 37 and 56% lower than the 127_m

thermocouple. The amplitude spectrum of the resistance thermometer is shown in

Figure 9 Note that a difference of 56% at i KHz between the compensated 127_m
t/c and i2.TMm resistance thermometer represents about 1.5K/_.

Figure 10 is the transfer function between the uncompensated optical fiber

thermometer and the compensated 76_m thermocouple for the 1159K (1626F) test

point. Figure 11 shows the percentage difference of line amplitudes between

the compensated optical fiber thermometer and compensated 76_m (3 mil)
thermocouple. Qualitatively similar results were obtained in a second burner

test at 1655K (2519F) as shown in Figures 12 and 13.

CONCLUDING REMARKS

The dynamic gas temperature measurement system offers measurement

capabilities previously unavailable for gas turbine engines. Structural

adequacy of the probes demonstrated in previous work is now more meaningful in

combination with measurement fidelity verification. The method can potentially

be adapted to transient engine acceleration combustor exit temperature
measurements, associated blade and vane cooling flow temperature measurements

during transients, as well as used for measurement of steady-state engine
dynamic gas temperature signals.

Directions for further work in this measurement technique include

fine-tuning and optimization of the basic method as well as extending the work
to investigate some fundamental aspects of heat transfer.

i. Measurement uncertainty contribution, both precision and bias, should be

determined for each source in the experiment and compensation method,

including the fine-wire thermometer standard. The need is to optimize

thermoelement diameter ratio and frequency range for determining r, and
to improve the experimental setup and other factors to minimize

uncertainty in the compensated gas stream measurement. Such an

uncertainty analysis would involve propagation of uncertainties for
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time-dependent quantities, and would require combining uncertainties in

both time and frequency domains.

The finite-difference model should be extended to include material

properties for both halves of the thermoelement. Use of average

properties simplifies the model with compromise to uncertainty in the
compensation method. The average properties versus individual properties

change would determine the corresponding measurement uncertainty
contribution, and allow cost versus complexity trade-offs to be made for

the compensation scheme.

The variation of F with frequency should be investigated. The r values

used in this work were averaged over the practical working bandwidth.

Investigation of frequency dependent r effects were beyond the scope of
this work.

Values of hg implicit in F should be determined explicitly according to

equation (4). The measurement technique developed here offers a novel

possibility for measuring hg for a cylinder in crossflow in a combustion
stream.

a

Cp =
d =

D =
f =

H(f) =

h =
K =

M =

p =

Pr =

Re :
T :
t :
U

X =

7/ =

LIST OF SYMBOLS

gas stream temperature amplitude at frequency f
heat capacity
thermocouple element diameter
thermocouple support wire diameter
frequency
transfer function
convective heat transfer coefficient
thermal conductivity
Mach number

gas pressure

Prandtl number = CPK_

Reynolds number
Temperature
time
velocity
wire length coordinate

K
thermal diffusivity = PCp

aerodynamic parameter defined in Equation (3)

viscosity

phase shift of thermocouple response with respect to gas temperature

at frequency f

density

thermocouple response
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LASER ANEMOMETRY: A STATUS REPORT

Mark P. Wernet, Richard G. Seasholtz, Donald H. Weikle, and Lawrence G. Oberle

NASA Lewis Research Center

Cleveland, Ohio

A laser anemometer system is being developed for the warm turbine facility as

part of the HOST program. The system will be built using results obtained from our

analytical and experimental research program. A status report of the laser

anemometry applications research effort will be presented.

SUMMARY OF LASER ANEMOMETER STATUS FOR WARM TURBINE FACILITY

The designs for the turbine casing, the windows, and the positioning system

have been completed. A block diagram of the laser anemometer system, signal

processing scheme, and computer system is shown in figure 1. The status of these

components is as follows:

Qptics. - The optics will use an f12.5 diffraction-limited final focusing
lens. This fast lens was selected to allow the collection of the maximum amount of

scattered light. It also will allow measurements close to surfaces by using large

aperture masks. The primacy optical design will be a single color laser fringe

design (LFA). The use of a second color is being considered to provide simultaneous

two-component measurements, if required. Both designs will include provision for

rotation of the sample volume so that both the axial and circumferential velocity

component can be measured. The four-spot time-of-flight anemometer system (TOFA)

will be evaluated for use in hot, high-speed flows. If it proves superior to the

LFA, the TOFA will be used.

Because of the aberration caused by the curved windows (0.250 and 0.3752 in.

thick), it will be necessary to use compensating optics. Without compensation, the

two beams will not, in general, cross and no measurements would be possible. The

correction scheme consists of using a cylindrical lens and actuator which act as a

zoom lens element.

Positionin_ system. - The optics will be mounted on a custom-designed optical

table attached to a three-axis linear positioning system. In addition, the viewing

direction will be determined by a mirror mounted on a two-axis goniometer, and the

sample volume orientation by an image rotator. These six axes are adjusted by a

controller that is interfaced to the system computer.

Seed injection system. - Because of the high-temperature flow environment, a

solid seed material will be used. A fluidized-bed seeder generator has been

purchased. The seed material will be alumina or another refractory material such as

titanium dioxide. An identical seed generator has been successfully used in the

NASA Lewis open jet burner. The seed injection will be through an 0.125-in. o.d.

diameter tube. The tube position will be determined by an actuator controlled by

the system computer. The seed injection mechanism is part of the casing design.

One alternative approach that is being investigated is the injection of titanium

61



tetrachIoride _ vapor into _he gas stream. Titanium tetrachloride reacts with water

vapor to form small titanium dioxide particles and hydrochloric acid.

Window cleaning. - One anticipated problem is maintaining optically clean

windows. It is expected that during operation the windows will be coated with seed

material and, perhaps, by combustion products and/or lubricating oil. The following

steps have been taken to alleviate this problem: First, provision has been made in

the design of the window frame for the injection of purge gas to prevent the

accumulation of contaminants on the windows. These purge holes can also be used to

inject a cleaning solution during operation. Finally, an access window has been

located so that the windows can be cleaned without removing them from the rig.

Data acquisition. - The data acquisition and experiment control will be handled

through the system computer, PDP 11/44. The signal processor for the LFA is a

counter processor. (The TOFA uses a custom-designed processor.) Each velocity

measurement will result in three quantities being sent via a DMA channel to the PDP

11/44: (1) the velocity, (2) the time between the current velocity measurement to

the previous measurement, and (3) the rotor position as determined by an electronic

shaft angle encoder (ref. 1). A custom signal preprocessor will be used to allow

computer control of a number of functions, including the selection of filters,

selection of the PMT high voltage, selection of the gain of the signal amplifier,

and monitoring of the PMT current.

Software. - The software needed to control the system and to acquire the data

is a major part of the project. It will determine both the quality of the data and

the efficiency of taking the data. The general goals of the system are

(1) To obtain axial and circumferential components of the velocity and turbu-

lence intensity through the measurement region (which includes both the

stator and the rotor)

(2) To determine the accuracy of these data

(3) To obtain a complete survey at one flow condition in a 4-hour test run

(4) To obtain estimates of the turbulence scale

(5) To have operating procedures simple enough so the system can be used by the

facility engineers without extensive training.

SEEDING WITH TITANIUM TETRACHLORIDE

The reaction of TiCl 4 with water to form TiO 2 is being investigated to form

seed particles for hot-section applications. Titanium tetrachloride reacts with

water in air as shown:

TiC14 + 2H20 => TiO 2 + 4HC1

The technique being used for forming particles in the open jet burner uses a dry air

carrier for the TiCl 4 gas. Moist air is generated by running a separate line of air

through a water bubbler. The TiCl 4 gas and moist air are then mixed 1 in. from the

entrance to the hot section by a concentric injector with the TiCl 4 stream in the

center. The TiO 2 particles are formed in the gas stream before it enters the

burner. The moist air surrounding the TIC14 gas tube keeps the tube free of

accumulated Ti02 and HCf.

In the initial tests run, data rates of 20 kHz were achieved. Data indicated

that the particles were small (_1 inn), but the size was not measured. Current tests

are being conducted to obtain samples of the TiO 2 from the burner exit. SEM

photographs will be taken to determine of the TiO 2 particle size.
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Some advantages of using TiC14 are (1) large number density of particles,

(2) small size, (3) generated where needed, and (4) constant rate of generation.

Some disadvantages are (I) toxic liquid and gas, (2) large amount of HCl to

neutralize, and (3) necessary use of special container materials (glass, ceramic, or

stainless steel)

FOUR-SPOT TIME-OF-FLIGHT LASER ANEMOMETER

The four-spot time-of-flight laser anemometer system (TOFA) is a hybrid system,

designed specifically for use in high-speed, turbulent flows near walls or

surfaces. These are the anticipated conditions inside the warm turbine facility.

The performance of the TOFA in low-speed flows (< Mach 0.3) was reported in the 1985

HOST Workshop (ref. 3). In early 1986 the new high-speed ECL version of the signal

processor, capable of measurements greater than Mach 2, was received from Case
Western Reserve University. An interface for the new signal processor to the system

computer has been completed and initial tests of the processor have shown good

performance up to Mach 1.3. A test was also conducted to determine additional

performance characteristics of the system.

The TOFA sample volume contains approximately half the illuminated area of a

typical LFA. The higher light flux in the probe volume enables the TOFA to measure

smaller particles than an LFA. Detection of smaller particles is desirable because

they follow the flow more accurately. A particle velocity lag experiment was

conducted to determine range of particle diameters detectable by the TOFA.

In the particle velocity lag experiment, the velocity of particles entrained in

the flow are measured downstream of a sonic nozzle. The gas accelerates through the

nozzle, reaching Math 1 at the exit. Particles greater in diameter than

approximately 0.3 _m will lag behind the gas velocity at the nozzle exit. The
amount of velocity lag is proportional to the particle diameter. The gas velocity

can be calculated from the plenum temperature and the pressure drop across the

nozzle. Since the laser anemometer can only measure the velocity of the particles

entrained in the flow, the particle lag velocity is directly obtained. The measured

particle velocity histograms are converted to particle diameter histograms. The

mean particle diameter and standard deviation are then determined from the particle

diameter histograms.

The seed particles used in the experiment were diagnostic latex spheres of

0.5- and 0.8-_m diameter, with a specific gravity of 1.05. A LFA cannot measure

particles less than approximately 0.7 tna in diameter. The results of the particle

lag experiment are shown in the table below and the corresponding velocity

histograms are shown in figures 2 and 3.

Seed particle Measured particle Standard eviation of
diameter, diameter, man diameter,

mm mm mm

0.50 0.54 0.20
.80 .82 .14

The spread in the histograms is caused by both error in the measurement and
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agglomeration of the seed particles. The estimates of the mean particle diameter

are biased to higher values than the true partlcle diameters because of these

effects. The results from the analysis show that the TOFA system can detect

particles down to at least 0.5 pm in diameter.

CORRECTION OPTIC FOR CURVED TURBINE WINDOW

The turbine casing for the warm turbine facility has been refabcicated with an

optical access window. The window, which is curved to match the inner radius of the

turbine casing, will minimize disturbance to the flow. The disadvantage of using a

curved window is its astigmatic aberration. The curved window acts as a lens with

uneven powers in the horizontal and vertical planes. An alternative approach and

previously the only approach, is to use planar windows (ref. 5). This minimizes the

astigmatic aberrations, but disturbs the flow field.

The laser anemometer system for the warm turbine will initially be a one

component system with an image rotator. Rotation of the probe volume through

various angles permits the measurement of the axial and circumferential velocity

components. Rotating the probe volume through the turbine window causes varying

degrees of image distortion. A solution to this problem is to preaberrate the image

before it passes through the turbine window. This correction optic must also have

continuous compensation throughout the survey range of the probe volume.

A lens design software package was purchased, and a correction optic for the

warm turbine window was designed. The correction optic will be zoomed in and out as

the three-axis table is _moved to position the probe volume (figs. 4 and 5). The

corrector has been optimized for normal incidence to the turbine window. The

astigmatic errors in the image formation can be reduced through the use of the

correction optic.
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N8 9 - 1288 6
ELEVATED TEMPERATURE STRAIN GAGESW

J. 0. Brlttaln, D. Geslln and J. F. Lel

Northwestern Unlvers ity

One of the goals of the Host Program is the development of electrical resist-

ance strain gages for static strain measurements at temperatures a 1273 K. Strain

gage materials must have a reproducible or predictable response to temperature, time

and strain. It is the objective of this research to investigate criteria for the

selection of materials for such applications through electrical properties studies.

The results of the investigation of two groups of materials, refractory compounds

and binary alloy solid solutions are presented in this report.

The materials selection criteria are summarized as follows:

(I) The material should not undergo a phase transformation in the temperature

range of interest. This was ascertained by studying existing phase diagrams.

(2) The materials should not undergo any order-dlsorder transitions or the

formation of clusters. In order to satisfy this criteria interstitial refractory

compounds were selected for a study of their elevated temperature behavior. In the

case of binary alloys an effort was made to locate ideal solid solutions, i.e.,

alloys in which both elements had activity coefficients close to one (i). In the

present case based upon a recommendation of one of our colleagues (2) we set a limit

on the activity coefficients of within 15% of one. Thermodynamic data (3,4) sug-

gested that the systems Ag-Pd and AI-V have ranges of concentrations that satisfy

this criterion. However, because of the shortage of activity coefficients data,

alternative qualitative parameters have been used to select alloys that appear to

satisfy this second criterion. Based upon the Hume-Rothery's work, elements that

have similar electronegatlvltles and molar volume tend to form ideal solutions. The

systems Mo-W, Mo-Re, and Nb-V were selected based upon these qualitative parameters.

(3) Chemical and thermal stability of the materials are important in order to

reduce the tendency for oxidation and in order to insure mechanical stability. It

was deemed useful to have a high melting temperature in order to minimize recrystal-

llzation and grain growth. The importance of insuring elastic behavior over the

useful or desired strain range could in principle be achieved by selecting materials

for which (OE.L./E) > ¢max where OE.L. is the stress at the elastic limit. E is the

Young's Modulus, and ¢max is the maximum strain to be measured. This parameter will

have to be evaluated experimentally due to the lack of published data on the

materials under investigation.

(4) Finally, several materials have been selected for the experimental phase

of this work based upon published electrical reslstlvlty-temperature data. This was

true of the Cr-V alloys for which results were presented last year. Table I listed

all of the materials evaluated and the basis for their selection for this program.

*Work done under NASA Grant NAG 3-501
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MATERIALSPREPARATION,PROCESSINGANDEXPERIMENTALTECHNIQUE

The alloys listed in Table I have been prepared by arc melting in the usual
mannerunder a purified Ar atmosphere. The 5 to I0 gmhomogenizedingots were
sliced into thin plates via a diamond cut off disc. Specimensfor electrical re-
sistance measurementswere processed from the plates by electrical discharge machin-

ing. An alternative method of preparing longer and thinner speclmens by means of

drawing the molten alloy into a quartz tube connected to a vacuum was tried. How-

ever, some pick up of Si occurred and we have abandoned this technique.

With two exceptions all of the refractory compounds were prepared as thin films

on AI203 substrata by the various methods listed in Table II. The two exceptions,

B4C and _-SiC, were prepared as bulk specimens by hot pressing and subsequently

thinned by slicing into electrical resistance specimens. The refractory compounds

thin films were obtained from several sources that have had considerable experience

in the various techniques utilized.

The electrical resistance (ER) of the specimens were measured via a four probe

technique using Pt or W leads and pressure contacts in conjunction with a ceramic

specimen holder. The contacts were checked and found to be ohmic at all tempera-

tures. Measurements were conducted in an evacuated quartz tube under a dynamic

vacuum of _ 10-5 tort. Thermal Emf were eliminated by alternating the direction of

the current. Initially measurements were conducted on individual specimens; cur-

rently three specimens are held in the ceramic device and readings on the three

specimens are made by rotating the contacts in the circuit.

RESULTS - REFRACTORY COMPOUND

A. Transition M_etal Nitrides

(a) TiN

The ER of two TiN films have been measured, one sample had been prepared by

HCD method and the other by CVD method. The electrical reslstance-temperature (ER-T)

curves are shown in Figs. I and 2. We can see that their electrical behaviors are

different, the resistance of TIN-I (I_CD) was metallic and increased with increasing

temperature while the resistance of TIN-2 (CVD) decreased with increasing tempera-

ture llke a semiconductor. TIN-2 (CVD) was not as stable as TIN-1 (HCD), however,

its TCR at the higher temperatures was much smaller (_ 143 ppm/K) and its repro-

ducibility can probably be improved by thermal cycling. An x-ray analysis indicated

that these two TiN films have different lattice parameters and compositions. TIN-1

is TiN with a = 4.174 A and TIN-2 is TIN0. 9 with a = 4.167 _, by using EDAX of SEM,

we also found that there are some chlorine (CI) in the TIN-2 films.

Co) TaN

Two TaN Rf sputtered thin films prepared with different nitrogen (N2)

partial pressures during sputtering (Table I) were tested. The ER-T data of both

films displayed metallic behavior, Fig. 3, however, the film with the lower N2

partial pressure (TaN-l) had a smaller TCR (_260 ppm/K) and the TCR of both

specimens decreased with thermal cycling. The drift rates were about 0.5%/hr for
both films.
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(c) ZrN

Three Rf sputtered ZrN specimenswere studied. A comparison of these three
samples during the second cycle of heating is shownin Fig. 4. The film with the
highest ratio of N2 during sputtering (i.e., ZrN-I) had the lowest TCR(_290 ppm/K)
but it also had the highest drift rate (DR) (_ 0.54%/hr).

(d) CrN

The ER-T data for the CrN was metallic with a very large TCR (_710 ppm/K).

The drift rate of resistance was also very large (--20%/hr). This may have been due

to the oxidation of CrN and the formation of a Cr203 layer that may not have been

protective. Figure 5 compares the reslstance-temperature data for four different

nitrldes, clearly TaN has the lowest TCR while CrN has the highest TCR.

B. Transition Metal Carbides

TiC

The results of measurements on Two TiC films are shown in Figs. 6 and 7 re-

spectively. Just like TiN, the film prepared by CVD method (TIC-2) had the higher

drift rate at 1275 K (_-0.5%/hr) but a lower TRC (_250 ppm/K).

C. Semiconductor

(a) B4C

Among all the specimens studied, the results obtained for the B4C specimen

are most promising: (i) the smallest TCR (_ 160 ppm/K) and (2) the smallest drift

rate (_0.1%/hr for 17 hours) as shown in Fig. 8. Additional experiments are

planned for B4C.

@) sic

Figure 9 shows the ER-T result of a B-SIC film prepared by the EBE method

on an AI203 substrate (SIC-I), its TCR at 1273 K is _ 330 ppm/K and the drift rate
is N 0.3%/hr. This high drift rate may be reduced by increasing the thickness of

the film in order to minimize the apparent evaporation effect. ER-T measurements

in an Argon atmosphere are planned in order to minimize any effects that may be

associated with the high vacuum utilized in the present measurements. Future plans

will also include measurements in an oxidizing ellvlronment with the _-SIC protected

by a nonconducting high temperature cement. The hot pressed high purity s-SIC was

more stable, with a drift rate of only _ O.04%/hr but a larger TCR (_ 1940 ppm/K),

Fig. i0. It may be possible to decrease the TCR in the D-SIC by doping.

SUMMARY - REFRACTORY COMPOUNDS

The results for all the specimens are summarized in Table III. Based upon the

target values for TCR of 200 ppm/K and a drift rate of N 0.1%/hr (5) only B4C meets

the target values. However, for a total error of 10% (6), even this drift value

appears to be too large. However, TaN-I (Rf sputtered), TIN-2 (CVD), TiC-I (ARE),

TIC-2 (CVD) and B-SIC) (EBE) also warrant further investigation. Since the ratio
of the non-metal atoms to the metallic atoms play an important role in the electrical

properties of the transition metal compounds (7), future work will involve this
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parameter in the search for strain gage materials with low TCR and high electrical

resistance stability, i.e., low drift rate at high temperatures.

RESULTS - BINARY ALLOYS

A. Silver-Palladlum System

Based upon the ideal-solld solution criteria we anticipated reproducible and

stable electrical reslstance-temperature data for alloys with Ag content of less

than 5 w/o. Experimental confirmation was reported last year but the TCRat 1273 K

of that composition was large. An increase of the Ag content from 4.1 to 15.5 w/o

reduced the TCR from 774 ppm/K to 260 ppm/K without a loss of reproducibility or

stability of the electrical resistance, Figs. II, 12, Table IV. With a further

increase in the Ag content to 35.3 w/o Ag, the composition known to produce an even

lower TCR (< i00 ppm/K) a large drift of the resistance at 1273 K occurred,
Table IV.

B. Aluminum-Varmdlum System

As reported last year an AI-V alloy 79.3 w/o V had a very low but negative TCR

(-22 ppm/K) and a low drift (50 ppm/K0 at 1273 K. This alloy had been prepared by

drawing the molten alloy into a quartz tube. A microprobe analysis indicated the

presence of Si. Three additional specimens with higher V contents were prepared by
conventional arc melting. The results of the electrical measurements are shown in

Figs. 13, 14. The (ER-T) curves were metallic in form and the TU_R for the three

alloys improved as the V content increased. A ternary alloy of AI-82.1 w/o V-2 Si

was prepared to verify the effect of Si additions, the resulting Er-T curves, Fig.

15 was of a different form from the binary alloy, the effect of Si was quite pro-
nounced. This alloy had good TCR and drift characteristics. Further work on the

ternary system is planned.

C. Nioblum-Vanadlum System

The composition 5.2 w/o V was selected for investigation based upon the reported

good oxidation resistance (8). While the reproducibility after the first heating

cycle and the agreement in the ER-T curves for three specimens were good, Fig. 16 and

17; the TCR was large (_550 ppm/K) and the drift at 1273 K of 500 ppm/K was larger

than desired. It may be that similar to the AI-V system a ternary addition might
result in a lower TCR and drift rate.

C. Molybdenum-Rhenlum

Based upon published data (9) the 71% Mo alloy was selected to provide an

acceptable TCR. The Er-T curve was quite reproducible after the first heating

cycle and the drift at 1273 K was quite low (< 80 ppm/hr), however, the TCR of (623

ppm/K) was higher than desired (Fig. 18). Here again there is the potential to

improve the TCR by a ternary addition.

SUMMARY - BINARY ALLOYS

With the exception of the AI-V-SI system, the alloys investigated thus far

behave as predicted in terms of reproducibility between cycles after stabilization

if the drift at 1273 K is neglected. In an effort to meet the TCR requirement of
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< 300 ppm/K, several of the alloys showpromlse. Thesealloys are the 15.6 w/o Ag
and 35.5 w/o Ag-Pd alloys and the AI-V alloys. While the 35.5 w/o Ag-Pd alloy does
not meet our selection criterion as an ideal solution, the low TCRindicates that
further study maybe of interest. It is also possible that improvements in the
electrical behavior of the Nb-V and Mo-Realloys can be achieved by the addition
of third elements.

In order to improve the oxidation resistance of several of the alloys an effort

is underway to prepare alloys via mechanical alloying with the inclusion of Yttrium

or Cerium oxide. The oxide additions may also serve to stabilize the structure,

especially grain size, and improve the electrical behavior at elevated temperatures.
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TABLEI

MATERIALSSELECTEDFOREVALUATION

Material Basis for Selection

Pd-Ag 1
AI-V i
Nb-V 2
Cr-V 3
Mo-Re 2, 3
TiN 4
TiC 4
ZrN 4
TaN 4
CrN 4
B4C 4
SiC 4

I. Ideal solution, thermodynamicdata.
2. Qualitative parameters, tendency to form

ideal solutions.

3. Reslstance-temperature data.

4. Refractory compounds, high melting tem-

perature, structural stability,
oxidation resistance.

Specimen

TIN-1

-2

TaN-I

-2

ZrN- i

-2

-3

CrN

TIC-I

-2

B4C

_-slc-i

cL-SIC-2

TABLE II

PREPARATION METHODS FOR REFRACTORY COMPOUNDS

Preparation Method

HCD, Hollow Cathode Discharge

CVD, Chemical Vapor Deposition

RfS Radio Frequency Sputtering

Rf_ Radio Frequency Sputtering

Remarks

with N2/Ar +N 2 _ 22 %

with N2/Ar +N 2 _ 25 %

with N2/Ar +N 2 _ 1.65%
~ 0.19%

0.16%

HCD

ARC, Activated Reactive Evaporation

CVD

Hot Pressed

EBE, Electron Beam Evaporation

Hot Pressed

Bulk Sample

Bulk Sample
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TABLEIII

SUMMARIZEDRESULTSFORREFRACTORYCOMPOUNDS

Drift Rate
Specimen TCR (ppm/K) (ppm/hr) (DR)

TiN-I (HCD) 588 1400

TIN-2 (CVD) 143 2200

TaN-I 260 4900

-2 300 5000

ZrN-I 290 -5400

-2 330 -2600

-3 420 600

CrN 710 20%

TiC-I (ARE) 366 580

TIC-2 (CVD) 250 -5000

B4C 160 940

_-SIC-I 330 -3000

_-SIC-2 1940 380

Remarks

Reproducibility improved

by thermal cycling

TCR and DR decreased

with thermal cycling

TCR increased while

DR decreased with

cycling.

TCR increased while DR

decreased with cycling

DR decreased by

increasing thickness

Sample w/o

AgPd 4.3 Ag
ii .7

15.5

35.3

AIV 79.3 V

86.65

88.9

82.1 - 2Sl

NbV 5.2 V

CrN 67.4 V

MoRe 71 Mo

TABLE IV

SUMMARIZED RESULTS FOR ALLOYS

TCR (1270 K)

ppm/K

774

460

260

30 to 165

-22

150

134

-20

550

556

623

Drift (1270 K)

ppm/hr

1723

62

140

7000 to 38,000

50

1280

6000

-1800 cycle i

- 800 cycle 2

800

1130

60 cycle I

75 cycle 2
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DEVELOPMENT OF A HIGH TEMPERATURE STATIC STRAIN SENSOR*

Charles O. Hulse and Richard S. Bailey

United Technologies Research Center
and

Howard P. Grant

Pratt and Whitney

INTRODUCTION

The goal of this program is to develop an electrical resistance strain gage system

which will accurately measure the static strains of superalloy blades and vanes in gas turbine

engines running on a test stand. Accurate knowledge of these strains is essential to reaching

the goals of the H3st program in the selection and experimental verification of the various
theoretical models developed to understand and improve the performance of these engines.

The specific objective of this work is to develop a complete system capable of

making strain measurements of up to _+2000 microstrain with a total error of no more than

_+10 percent of full scale during a 50 hour period at temperatures as high as 1250 K. In

addition to survival and stability, attaining a low temperature coefficient of resistance, of

the order of 20 ppm/K or less, was a major goal. This requirement arises from the presently
unavoidable uncertainties in measurement of the exact temperatures inside gas turbines for

use in making corrections for apparent strain due to temperature.

EXPERIMENTAL FACILITIES

The thermal cycling apparatus shown in figure 1 was used to make resistance

measurements up to 1250 K at constant temperatures or at heating and cooling rates as high

as 250 K/min. The sample, which is positioned axially in the center of a split metal tube

heater_ can be either in the form of an end to end strip or as a gage installed on a substrate
with both of the electrical connections at the same end. The system also includes an

external plenum_ not shown in figure 1, to permit cooling gases to be introduced at lower

temperatures for better temperature control and_ in addition, a computer system with special

features to obtain accurate resistivity data at high speeds.

SENSOR PROPERTIES

In previous alloy development work (refs. 1_2) the Pd-13Cr (in weight %) alloys was

identified as the best alloy candidate available for use at these temperatures in terms of

stability and reproducibility. Regardless of the rates of heating and cooling, this alloy

always shows a very linear resistivity versus temperature behavior. This indicates that the
Cr is always in complete solid solution and that no ordering or second phases are formed at

any temperature in this system. Although the addition of Cr dramatically lowers the

*Work done under NASA Contract NAS3-23722
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thermal coefficient of resisl_ivity compared to that of pure Pd, this coefficient is still too

high for this application. In order to reduce the thermal sensitivity to acceptable levels, the

thermally compensated design shown in figure 2 was developed. The strain sensitive resistive

element in the center of the gage is still 3 mm x 3 mm as defined by the program goals but

symmetrical outlying grids have been added to provide thermal compensation. These

additional low resistance compensation grids of Pd or Pt have high temperature coefficients
of resistance and are relatively strain insensitive. Because all of these resistive elements

show linear resistance versus temperature behavior, this compensation should apply over the
full temperature range of interest.

An important feature of the PdCr alloy was that it should be inherently self

protective with regard to oxidation, At exposed surfaces_ the Cr oxidizes to form an

adherent scale of Cr203 to protect the Cr electron scattering centers dissolved in the alloy

beneath the oxide from further oxidation. The earlier conclusions about the stability and

repeatability of the resistance of the PdCr alloy was based on measurements made using 0,46

mm (460 ]am) thick metal strips of the alloy prepared by drop casting followed by grinding

and annealing, A primary objective this year was to verify that this good behavior remained

when the alloy was prepared as an even thinner film prepared by sputtering. Sputtering is

the preferred fabrication technique for actual gages because of good bonding and the ability
to form well-bonded undercoats of alumina insulation films using the same process,

One of the problems with sputtering is that the material is deposited as nodules which

must be separated by boundaries with significant misorientations which should provide paths
for fast diffusion. The concentration of these boundaries and the potential for these

boundaries to be unstable during the use of this material as a strain gage can be avoided by

annealing. We have determined that these films can be recrystallized by a 12 hour heat
treatment in argon (1 x 10 -s ppm 02) at 1420 K. An unfortunate side effect of this

treatment was the observation that the resultant films sometimes contain holes, Figure 3

shows a severe example of this effect, It is believed that these holes are caused by the loss

of some of the much larger nodules which always seem to be present in these films, It is

believed that the loss of these nodules may be related to differential thermal expansion

stresses set up between the substrate and the overlying films during heating and cooling.

Experimental data on the effect of sensor thickness on the stability of resistance at

1250 IK in air is presented in figure 4. The material for the 50 ]am thickness was prepared by

splat quenching while that at the 6.5pm thickness was prepared by sputtering on top of

sputtered alumina on a Hastelloy X substrate. Due to an error by the vendor in preparing

the target, the sputtered samples also contained approximately 5 wt percent AI as an

impurity replacing some of the Pd. All of these samples were heated for at least 10 hours

at 1250 K in air prior to drift testing in order to form stable oxide surface scales.

The rate of drift of the sputtered film, even with only one side exposed to oxidation,
is unacceptable for our use. Measurements of the thermal coefficient of resistivity of this

film gave results which indicated that most of the Cr and AI in the film had been

lost. When the material is this thin, most of the oxide forming elements must apparently be

consumed in order to form the protective scale. The reason why the resistance of the

intermediate thickness film increased rather than decreased with time is not clearly

understood. It may indicate the operation of a fundamentally different oxidation process.

Experience with the fabrication of sputtered resistive grids has shown that it is

difficult to make films thicker than 6,5pm when the spacing between the individual grid

resistors is as small as 761Jm, The high strength of the PdCr films makes it difficult to

break the unwanted film loose along the lines separating the film sputtered on the photo

resist and that on the part, Although recent work has indicated that we may be able to
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make thicker deposits by using thicker masks, it also rapidly becomes more difficult to
develop the desired level of total grid resistance with this small a grid area if thicker films
are used. Avoiding this problem by increasing the voltage across the sensor increases the
probability of voltage breakdown across the insulation layer and causing unacceptable levels
of self-heating of the gage.

PROTECTIVEOVERCOATS

Attempts have been made to completely or significantly seal the exposedsputtered
PdCr surfaces by forming an additional top overcoating of alumina. It is recognized that
aluminum oxide would be a superior film to prevent oxidation. The diffusion of Cr is

relatively rapid through its oxide and Cr can form volatile oxides (Cr(OH)2 and CrO_) which

do not form in the case of alumina. Attempts to oxidize sputtered aluminum overcoats in

place were not particularly successful because the aluminum oxide formed was so impervious

to any further oxidation. Figure 5 shows "spurs" of alumina formed along the edges of PdCr

resistive grid lines. Apparently the aluminum melted, the volume expansion ruptured the

thin oxide surface, and more oxidation occurred until all of the aluminum metal was oxidized

or dissolved in the alloy. Curent experimental approaches to identify the optimum top

coating configuration are summarized in Table 1. In some of these experiments, the alumina

is being sputtered with the substrate heated to reduce the maximum tensile forces that could

be generated in these films by the differential thermal expansions between the oxide and the
Hast X substrate.

.

.
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AFTER RECRYSTALLIZATION

U_Gi;_!_. PAGE IS

OF POOR QUALITY

Figure 3

EFFECT OF FILM THICKNESS ON DRIFT IN
RESISTANCE OF Pd-13 wt % Cr

(1250 K in air for 50 hours)

Resistance
change,

&RIR

Figure 4

0.020

0.010

01

-0.010

- 0.020

- 0.030

- 0.040
- 0.050

Film thickness

o 460_m

o 50pm

z_ 6.5pm (sputtered)

- 0.060 -
t t I J

0 10 20 30 40 5O

Time (hrs)

89 86-9-6-8



EDGE PROTRUSIONS ON PdCr GRID

AFTER OXIDATION OF 0.5/_m AI OVERCOAT
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TABLE I

STRAIN GAGE OVERCOAT SYSTEMS

Sensor

Type PdCr AI203

1 X X

2 X X

3 X X

4 X X

5 X X

6 X X

Sputtered

FeCrAI Pt Glass

X

X

X

Transfer tape
AI Glass

X

X

90 86--9--6--9



N89-12888

THE NASA LEWIS STRAIN GAUGE LABORATORY - AN UPDATE

H.F. Hobart

NASA Lewis Research Center

Cleveland, Ohio

At the 1985 HOST conference the status of the Lewis strain gauge laboratory was

described. The goals were outlined, a description of the apparatus was presented,

and some preliminary data were shown which demonstrated the ability of the

laboratory to perform the types of tests required to characterize high temperature

static strain gauges. At present the goals are unchanged, that is, to support HOST

programs in the area of high-temperature static-strain measurement both in-house and

through contract work.

Efforts continue in the development and evaluation of electrical-resistance

strain gauges of the thin-film and small-diameter wire type. This paper presents

results obtained early in 1986 on some Chinese gauges and Kanthal A-1 gauges mounted

on a Hastelloy-X substrate. Also, the status of several activities currently in

progress will be presented. These more recent efforts include (1) the determination

of the uncertainty in our ability to establish gauge factor, (2) the evaluation of

sputtered gauges that were fabricated at Lewis, (3) an investigation of the efficacy

of dual-element temperature-compensated gauges when using strain-gauge alloys having

large thermal coefficients of resistance, and (4) an evaluation of the practical

methods of stabilizing gauges whose apparent strain is dependent on cooling rate

(e.g., FeCrAI gauges).

MEASUREMENT CAPABILITY

A major characteristic of interest when using electrical resistance strain

gauges is the sensitivity to strain or gauge factor. Because some early data showed

excessive hysteresis, repeat tests were run to try to determine our ability to

impose a known strain on a test gauge. Gauge factor determination tests use

constant-moment beams as shown in figure 1. An Inconel 718 beam with four reference

gauges was mounted in the bending fixture and stressed to about ±2000 microstrain

(_e) using different types of clamps, round and square edged.

Strain in the test beam is calculated from the equation:

where e is strain, t is thickness, d is deflection, and _ is length.

The beam thickness and deflection can be measured very accurately, but, due to

clamping/mounting variations, the length must be determined experimentally. Tests

results between the square and round edged clamps show the rounded edge had about

35 percent less data scatter.
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Figure 2 shows the variation of the effective, calculated beam length versus

deflection in both tension and compression; a deflection of about 1.2 cm is

equivalent to 2000 _e. Also, a ±1.0 percent of full-scale error band is shown.

Repeated cycling to check on zero shift showed a residual ±5 _e that is apparently

due to hysteresis. Zero shift can be minimized by exercising the beam before taking

data. All of these tests tend to show that strain calculations based on beam

deflection have an uncertainty that is a small fraction of the total error budget;

that is, they have an inaccuracy of less than 1 percent.

SPUTTERED GAUGES

One goal of the Lewis sensor development section has been to develop in-house

capability for sputtering thin-film sensors. Eight thin-film strain gauges were

recently fabricated. Four were sputtered from a FeCrAI target, the others from a

PdCr target. The estimated thickness of the film is 2 _m. Two types of lead wires

were used: a 0.76-nun-diameter NiCrSi wire and a 0.025- by 0.25-n_n ribbon of pd.

The leads were attached to the film with a parallel-gap welder.

The substrates were 1.1-n_n-thick alumina beams similar in shape to that shown

in figure 1. Alumina beams were used for several reasons - alumina is a good

high-temperature material, it doesn't require an insulating layer before gauge

installation, and, because advanced turbine engines will be using components of

ceramics, some experience will be gained in learning to instrument nonmetallic

material.

These gauges are scheduled to be tested for gauge factor determination and

apparent strain tests in the near future. However, before testing, a heat treatment

will be required to recrystallize the as-sputtered alloy in order to have good

resistance to oxidation. In the case of the PdCr alloy, the self-protective scale

of Cr203 that prevents additional oxidation may not be sufficient for long-term use,

and an additional overcoat may have to be sputtered. An investigation for

implementing this additional protection is in progress under UTRC contract to

develop this gauge system.

TEMPERATURE COMPENSATION

Many strain-gauge alloys exhibit a large apparent strain when heated, partly

due to high values of thermal coefficient of resistance (TCR). One well-known

technique to minimize this effect is to install a second element of a selected

material in an adjacent arm of a Wheatstone bridge. The two elements will

compensate for each other over a range of temperatures.

A major effort of HOST funded research in strain measurement has been the

search for a strain-gauge alloy usable to 1000 °C. The PdCr alloy developed at UTRC

under NASA contract appears to have the desired characteristics of a linear, stable,

repeatable resistance versus temperature relationship, but, because of a high TCR,

gauges of this alloy will require a compensation element. In anticipation of this

need, an experiment to learn how to achieve the compensation was performed. Two

Ptgw gauges and two compensating resistors were flame sprayed over an alumina

insulating layer on an Inconel 718 test beam. One gauge used a Pt wire compensating

resistor, the other a Pd wire. The components were connected as shown in figure 3.

Tests are currently underway to measure apparent strain versus temperature of these

two gauges.
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TEST RESULTS ON FeCrAI GAUGES

Two 13- by 20-cm Hastelloy-X plates were instrumented, each with two

Chinese-type gauges and two Kanthal A-I gauges. The Chinese gauges were bonded with

a high-temperature ceramic adhesive. The Kanthal gauges were applied by

flame-spraying an insulator onto the substrate. The Kanthal gauge was then cemented

down and given another flame-sprayed overcoat. Type K thermocouples measure plate

temperature. One plate will be used in an experiment on combustor liner thermal

cycling; the other has been thermally cycled at zero stress in an isothermal oven to

determine apparent strain.

The FeCrAI alloy used in these gauges undergoes an order-disorder effect

between 400 and 600 °C, and the shape of the apparent strain curve during a heating

cycle is strongly dependent on the rate of cooling of the gauges during the previous

cooling cycle. Figure 4 shows data on all four gauges after a fast cooldown. A

fast cooldown is defined as one traversing the critical temperature zone (600 to

400 °C) in less than 20 seconds.

If these gauges are soaked at a temperature of 700 °C for several hours, the

gauge resistance will stabilize and have a repeatable value. Figure 5 shows the

effect of three cooling rates on the apparent strain curves for both types of

gauges. The conclusion to be drawn from figure 5 is that at 700 °C Kanthal A-I has

an apparent strain that is approximately eight times that of the alloy used in the

Chinese gauges. Also, the Kanthal A-I is much more affected by the cooling rate.

For each type of gauge, the upper, middle, and lower curves represent cooling rates

of 5.5, 1.0, and 0.i K/s, respectively.

These data clearly show that, in order to use these gauges in an actual high

temperature application, the following precautions must be observed: (I) in order

to make a correction for apparent strain, the thermal history of the gauge must be

known - or preferably controlled, (2) gauges must be soaked at 700 °C for a few

hours to define the starting point, and (3) temperature excursions through the

critical temperature range should be made as quickly as possible to avoid errors due

to excessive drift.

The requirement for heating these gauges to 700 °C for at least I hour before

use may preclude their use in certain applications. We will attempt to stabilize a

gauge after installation by heating it with an electrical current. Test components

are now being fabricated so we can explore this approach. Particular attention will

be paid to the lead wire selection, attachment method, etc. If the gauges can be

heated to 700 °C and held at that temperature for the proper length of time, the

chance is good that when the power is shut off, the relatively large mass of the

test piece will act as a heat sink to rapidly cool the gauge, resulting in a known,

repeatable apparent strain curve.
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SUMMARY OF LASER SPECKLE PHOTOGRAMMETRY FOR HOST

Frank G. Pollack

NASA Lewis Research Center

Cleveland, Ohio

High-temperature static-strain measurement capability is important for the

success of the HOST program. As part of the NASA Lewis effort to develop the

technology for improved hot-section durability, the HOST instrumentation program

has, as a major goal, the development of methods for measuring strain at high

temperature. Development work includes both improvements in resistance strain-gauge

technology and, as an alternative approach, the development of optical techniques

for high-temperature strain measurement.

One of the recognized optical techniques for measuring the strain on a surface

involves measuring changes in the speckle patterns obtained from photographs of the

surface under laser illumination. The photographs, which are taken before and after

thermal or mechanical deformation of the surface, capture the surface distortion as

a corresponding distortion of the laser speckle pattern. A comparison of the

photographs are made on an interferometric photocomparator, which measures

differential magnification, which, in turn, corresponds to strain. Under the

direction of Dr. Karl A. Stetson, a laser speckle photogranm%etry system based on

this technique has been developed at United Technologies Research Center. The

system consists of a specklegram recording assembly and a interferometric comparator

for specklegram readout as shown in figures 1 and 2. This development was partly

sponsored by NASA Lewis under contracts NAS3-22126, NAS3-23690, and NAS3-24615. The

first of these contracts (NAS3-22126) was a study of methods for measuring static

strain on burner liners at temperatures to 870 °C. Under this contract, the laser

speckle photogrammetry system was shown to be capable of measuring the thermal

expansion of a Hastelloy X sample at temperatures up to 870 °C under laboratory

conditions. The test arrangement is shown in figure 3, and some test results are

shown in figure 4. Under the second contract (NAS3-23690) the laser speckle

photogrammetry system was applied to the measurement of strain on a burner liner

operating in a high-pressure, high-temperature, burner test facility at UTRC. A

photograph of the combustor liner used in the test is shown in figure 5. The test

cell arrangement is shown schematically in figure 6.

One of the problems in the use of this technique is optical distortion caused

by turbulent high pressure gas within the viewing path. Although the effects of

this distortion can be analyzed if the distortion is precisely known, the turbulence

encountered around an operating burner is random and not well documented. One of

the objectives of the experimental work in contract NAS3-23690 was to evaluate this

problem. The results indicated that, in its present state of development, speckle

photogrammetry can only be used at pressures below approximately 3 atmospheres. At

higher pressures, turbulence of the gas within the viewing path causes the speckle

patterns to blur (see fig. 7) and fail to correlate between photographs.

The objective of the third contract (NAS3-24615) was to demonstrate the use of

the UTRC specklegram photogran_netry system on the burner liner cyclic fatigue rig at
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NASA Lewis (fig. 8). In th_s rig flat plate samples of burner liner material ace

subjected to cyclic stresses in order to study phenomena such as thecmomechanical

deformation and fatigue. Because the rig operates at ambient pressure, distortion

due to turbulent gas was not expected to be a problem. The contract involved the

temporary use of the UTRC specklegram recording system at NASA Lewis to record

specklegrams that were subsequently processed for strain data at UTRC using their

automated intecferometric comparator. Specklegrams were recorded at ambient

temperature and at increments of approximately 100 °C up to 900 °C and back down to

120 °C. Following this, three pairs of specklegrams were recorded while cycling

between the temperature extreme, and this was followed by a final recording at

ambient temperature. Temperature at each data point was monitored by thermocouples

and an infrared thermal scanner. The plates from the data run were developed at

NASA Lewis. A typical speckle photograph is shown in figure 9. In three data runs

72 specklegrams were recorded and examined. The first set of 24 specklegrams lacked

correlation, which was traced to out-of-plane warping and tilting of the sample in

the test rig.

Based upon information from UTRC data evaluation of the first run, tests were

performed by NASA personnel to check for tilting of the sample. A small spot in the

center of the sample was illuminated by a CW laser, and a television camera, focused

at infinity, was directed at this spot. The aperture at the center of the

telecentcic lens was imaged on the camera sensor and appeared on the TV monitor.

Speckles were observed within the aperture, and they were seen to move horizontally

as the sample was heated. A video recording was made of this speckle pattern for a

sequence of heating and cooling of the sample, and this recording was sent to UTRC

for evaluation. Between maximum and minimum temperatures, speckles were noted to

move about four aperture diameters. This indicated excessive tilting about a

vertical axis in the order of 6 ° due to heating. After mounting the sample move

securely, two additional data runs were performed, one at the same temperatures as

the first data run and the second with reduced temperature increments. Both of

these runs also exhibited correlation problems although to a lesser degree.

The data obtained in these tests show an erratic pattern of strain (see

fig. 10). This is particularly true for the data obtained by comparison of the

sample before and after a temperature cycle. The important question is whether

these data provide a valid description of the strain induced in the sample as a

result Of the thermal cycling or whether they are the result of turbulence or other

artifacts of the specklegcam recording system.

In summary at the present state of development, the laser speckle strain

measuring system has a demonstrated capability to measure strain at 870 °C in the

laboratory. The speckleEcam recording system has a demonstrated capability of

withstanding a test-cell environment and successfully recording specklegrams. The

most recently completed tests show that the system is sensitive to extraneous

movement of the surface under study. This sensitivity may limit the applicability

of the system to experiments in which the surface is precisely located. For

applications in more nearly "engine condition" experiments, the limitations imposed

by distortion due to turbulent, high-pressure gas within the viewing path, and

extraneous movement of the surface under study will have to be overcome. In

addition, further work to define the static error boundaries for this measuring

system is required. Finally, the development of convenient optical techniques to

measure test surface movement, especially out of plane movement and tilting of the

surface, is desirable.
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AEROTHERMAL MODELING PROGRAH--PHASE II*

ELEMENT A: IMPROVED NUMERICAL METHODS FOR TURBULENT VISCOUS RECIRCULATING FLOWS

K.C. Karki, H.C. Mongia, S.V. Patankar_, and A.K. Runchal$

Allison Gas Turbine Division

General Motors Corp.

The main objective of the NASA-sponsored Aerothermal Modeling Program, Phase II--

Element A, is to develop an improved numerical scheme for predicting combustor flow

fields. This effort consists of the following three technical tasks. Task i has

been completed and Task 2 is in its final stage.

Task 1--NUMERICAL METHOD SELECTION

Task 1 involved the selection and evaluation of various candidate numerical tech-

niques. The criteria for evaluation included accuracy, stability, boundedness,

and computational efficiency. These schemes were used to solve a number of simple

test problems. On the basis of these preliminary results, the following three

schemes were chosen for detailed evaluation:

(i) flux-spline techniques

(ii) CONDIF

(iii) bounded flux-spline

To make the solution algorithm more efficient, it was decided to evaluate the per-

formance of a fully coupled approach in which the continuity and momentum equations

are solved directly, rather than sequentially as in SIMPLE or SIMPLER (ref. I).

Task 2--TECHNIQUE EVALUATION

Task 2, currently in progress, involves an in-depth evaluation of the selected

numerical schemes. The numerical accuracy and computational efficiency were judged

using the test cases that have either analytical solutions, fine-grid numerical

solutions, or experimental results. The following three classes of test problems

were investigated:

(i) convection-diffusion (scalar transport)

(ii) laminar flows

(ill) turbulent flows

The results for each of these groups are summarized in the following paragraphs.

*Work done under NASA Contract NAS3-24350.

_niversity of Minnesota.

#Analytical and Computational Research, Inc.
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Convection-Diffusion

The test problems for convection-diffusion included (a) the transport of a step

change in a scalar in a uniform velocity field, and (b) recirculating flow in a

cavity with prescribed source for temperature. For both these problems, the

higher-order schemes (flux-spline and CONDIF) give more accurate results than the

hybrid scheme over the entire range of Peclet numbers (see Figures 1 through 4).

For the transport of the step change in the scalar, the flux-spline schemes exhibit

undershoots and overshoots.

Laminar Flows

Two selected laminar flow test cases are: (a) driven cavity and (b) flow over a

backward facing step.

The driven cavity problem was solved using a 22 x 22 uniform grid and the results

were compared with a 82 x 82 hybrid solution. The higher-order schemes give much

better accuracy and show substantial advantage over the hybrid scheme (see Figures

5 and 6). Computations for the flow over a backward facing step were made at two

Reynolds numbers (Re = i00 and 715) and the results were compared with the experi-

mental data (ref. 2).

At Re = i00, there is negligible false diffusion and the results of all schemes

compare well with experiments. At Re = 715, the higher-order schemes predict a

longer reattachment length, compared to the hybrid scheme, indicating smaller

numerical diffusion. There is, however, disagreement between the numerical and

experimental results. These deviations are probably due to the presence of three-

dimensional effects in the experiments (ref. 2).

Turbulent Flows

The selected schemes were used to compute the Stanford Conference test case 0421

(flow over a backward facing step) (ref. 3). The computed reattachment lengths

from various schemes are listed in Table I. In these computations, plug flow was

assumed at the inlet. It is seen that the flux-spline scheme approaches a grid-

independent solution with fewer grid points than the hybrid scheme. The improve-

ment shown by the flux-spline technique, however, is not as large as in laminar

flow cases. A similar trend in the results was noticed when the experimentally

measured velocity profile was specified at the inlet.

Performance of the Coupled Solution Approach

The efficiency of a numerical technique based on the primitive variables depends

to a great extent on the manner in which the velocity-pressure coupling is treated.

The iterative methods (e.g., SIMPLE, SIMPLER) derive an equation for pressure and

solve the momentum and pressure equations in a sequential manner. The convergence

of such an approach is found to be slow. An alternative to this sequential

approach is the direct solution of the whole set of continuity and momentum equa-

tions (ref. 4 and 5). This study evaluates the performance of a direct or coupled

approach in conjunction with a flux-spline scheme for convection-diffusion.
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In the present approach, the discretized continuity and momentum equations are

treated as simultaneous equations and solved using the Yale Sparse Matrix Algorithm

(YSMP) (ref. 6). The nonlinearities in the equations are handled using the suc-

cessive substitution technique. In turbulent flow computations, the solution of

the flow equations (using YSMP) is followed by the solution of the equations for

the turbulence quantities (k and ¢). The equations for k and c are solved

sequentially in a decoupled manner using a line-by-line tridiagonal matrix algor-

ithm (TDMA). The sequence of calculations is as follows: (i) the continuity and

momentum equations are solved using YSMP, (2) with the given velocity field, the k

and c equations are solved to provide a new viscosity field for the momentum

equations. This procedure is repeated until convergence.

Preliminary Results

The details of the test problems selected for the evaluation of the coupled solu-

tion approach are given in Table II. The number of iterations required for con-

vergence and the execution times for the coupled solver are compared with those

for the SIMPLER approach in Table III. The results indicate that the direct solver

gives a speed-up factor of about three for laminar flows and five for turbulent

flows. Further evaluation on a finer grid is under progress.

TASK 3

The convection-diffusion scheme with superior performance in Task 2 and the direct

solver will be incorporated in the NASA 3-D elliptic code (COM3D). A test case

will be run to assess the accuracy and computational efficiency of the selected

scheme/algorithm for three-dimensional situations.
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Table I.

Calculated reattachment lengths [XRlh] (plu K flow at the step).

Grid Hybrid CONDIF Flux-spline

32 x 32 4.4 4.2 4.6

40 x 40 5.0 4.5 5.3

57 x 57 5.2 --- 5.3

Case No.

Table II.

Laminar flow test cases.

Flow Reynolds number

Driven cavity

Driven cavity

Sudden expansion

Sudden expansion

400

i000

400

400

Turbulent flow test cases

Backward facing step 5.6 x 105

Grid

(uniform)

22 x 22

22 x 22

22 x 12

22 x 22

22 x 22

Case No.

Table Ill.

No. of iterations required and execution times.

No. of iterations

SIMPLER Direct

Execution times

(seconds)

SIMPLER Direct

62 17

84 30

106 47

122 48

800 39

18 6

24 8

16 5

35 i0

408 79

IBM 3084
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AEROTHERMAL MODELING PROGRAM--PHASE II*

ELEMENT B: FLOW INTERACTION EXPERIMENT

M. Nikjooy, H.C. Mongia, S.N.B. Murthy T, and J.P. Sullivan _

Allison Gas Turbine Division

General Motors Corp.

INTRODUCTION

"[hJs research is conducted as part of the NASA Lewis Research Center program

to improve the design pr'ocess and enhance the efficiency, life, and

maintenance costs of the turbi.ne engine hot sect:ion. Recently, ther'e has be(m

much emphasis on the need for improved numerical codes for the d(_sign of

efficient combustors. For" the development o? improved computational codes,

there is a need for an experimentally obtained data base to be used as Lest

ca,,.;es for the accuracy of the computations.

lhe purpose of Element.-B is to establish a benchmark quality velocity and

scalar' measurements of the flow inter'action of circular jets with swirling

flow typical of that in the dome region of annular combustor. In addition to

the detailed exper'imonta] effort, extensi, ve computations of" the swJr'].ing flows

are to be compared with the measurements for the purpose of assessing the

accuracy of current and advanced tur'bulence and scalar transport m(:,de],s,

The Allison program for Element B has five major tasks:

]. Experimental Configur'ati on

2. Mode 1 i ng

3. Measurements

4. Results and Analysis

5. Mode]. ]mprovemer_t

*Work done under NASA Contract NAS3-24350.

_Purdue University.
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• E'XPFRIMENTAL CONFIGURATION

"Ibis task inuolved preliminary design of the test section, its detailed design

for fabrication and the experimental plan for data acquisition. The test

section is of rectangular" cross-.section (15 in. x 3 in.) and extends 10 duct

heights (30 in.) downstream from the head plate (Figure I). The test section

is constructed of glass and plexiglass to facilitate optical access for" the

laser Doppler velocimeter (LDV). The main flow is established using five

swirlers and the primary jets are injected in cross--flow. Each swirler

consists of an actual swirler from the production of the A11ison 570--K

turboshaft gas turbine engine. These are 60 degree angle flat vane swJrlers

with ]2 vanes. They have an outer flow diameter of 1.459 in. and inner flow

diameter of I.O84 in. -[he center swirler' region is that: of interest for

taking data. The two swirlers on either side of the center are to remove

side-wall effects inher'ent to the mode] but not in an actual combustor. Under"

this task, two similar rigs - one using air for I_DV measurements, and the

other using water for flow visualization have been designed, lhe detailed

test matrix for the flow interaction program is given in Table 1 and the

corresponding flow configur'atiorls are shown in Figure 2. These tests are

designed to determine the effect of jet downstream location, number of jets,

mass flow, and position relative to the swirl axis.

MOO E L.I N G

A three dimensional code (COM3D) using the current turbulence model (k-c)

was employed to simulate different flow configurations for a preliminary study

of the flo_ fields. The primary objective of the task has been in

highlighting different flow regions in the flow field that would be taken into

accounl- during LDV measurements so as to resolve these regJons of steep

velocity gradient. Resu!ts indicate that these configurations offer

interesting flow fields for' the final verification/validation of models

against the data base• The predicted results were qualitatively reasonable

and the interaction of the jets and swirling flow wL_s clearly seen.
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MEASUREMENTS

Under "Task 3, two test rigs and various test configurations have been

fabricated and assembled. Initial check out runs have been made to ensure

that the rig, instrumentation, and data reducti.on software are performing

well. For the flow configurations identified in Task 1, measurements will be

made to obtain the following:

o detailed wall static pressure distribution

o mean velocity and Reynolds stress components using two-color,

two-component I.DV system

o fluctuating and mean concentration measurements for" assessing scalar

transport models.

In doing some flow visualization, it was later discovered that there are two

exit flow regimes. These are shown in Figures 3.-5. At low mass flow rates,

the exit flow expands outward at an angle considerably less than 90 degrees,

and is not attached to the head plate. At high mass flow rates, the exit flow

remai.ns attached to the head plate all the way out to the side wall. With

moderate flow rates, a bistable flow situation is set up. That is, the flow

will oscillate between the two regimes. Detailed velocity measurements are

underway and some of the results will be presented during the meeting.

RE.qUL'[S AN[) ANALYSIS

Measurements of velocity and smoke concentration will be analyzed to determine

the probabi].ity density function and auto- and cross--cor're]atiorls

MODEl.. IMPROVEMENT

Due to limited success with the standard k-.c model and its modifications,

work must continue in improving advanced turbulence and scalar transport

mod e ]s.
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Turbulent c]osure of the mean flow equations is obtained by adopting a

non-equJJJbrJum arld an equilibrium model for the Re_/nolds stresses using

different pressure-strain models (ref. i). In addition, performance of a hic3h

and a low Reyno]ds number mode] for combustor f](,u,, ca]culations usinc3

Reynolds-stress closures is investigated (ref.2-3). As for the turbu]ent

sc:a]ar- flux calculatior, s, two diff'er'ent mode].s are presented (ref. 3). One

so]yes the a]gebraic equations for the scalar fluxes, while the other employs

the tr'ansport equations for" their respective sea]at fluxes, lhe accuracy of

the model is determined by comparing the results with measur'ements.

RE FE:RE I_CI_S

Nikjooy, M., So, R. M. C. and Hwang, B. C., "A Comparison of Three Alge ....

braJc Stress C]osures for' C:ombustor F]ow Calcu]ations,"ASME -85.-.WA/F[-.-3.

Nikjooy, M., So, R. M. C., and Peck, R. E., "Modeling of 3et ..... and Swirl -

Stabilized Reaclinc] Flows ]in Axisymmetric Combustors," ASME -Winter An...

nual Meeting, 1986.

Nikjooy, I_,., "On the Modeling of Non-reactive and Reactive 7ur'bu]ent Corn

bustor Flows," Ph.D. Thesis, Arizone State University, 1986,
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AEROTHERMAL MODELING PROGRAM--PHASE II*

ELEMENT C: FUEL INJECTOR-AIR SWIRL CHARACTERIZATION

A.A. Mostafa, H.C. Mongia, V.G. McDonnell_, and G.S. SamuelsenT

Allison Gas Turbine Division

General Motors Corp.

The main objectives of the NASA-sponsored Aerother_nal Modeling Program, Phase II

Element C, are experimental evaluation of the air swirler interaction with a fuel

injector in a simulated combustor chamber (Figure 1), assessment of the current

two-phase models, and verification of the improved spray evaporation/dispersion

models.

This experimental and numerical program consists of five major tasks. Tasks 1 and

2 have been completed. Brief descriptions of the five tasks are given in the fol-

lowing paragraphs.

TASK 1--EXPERIMENTAL CONFIGURATION

This task involved preliminary design of the test section, its details for fabri-

cation, and the experimental plan for data acquisition.

The aim of the experiment is to collect benchmark quality data to study the inter-

action of the fuel spray with a swirler typical of current use in aircraft turbine

engines.

The fuel nozzle and swirler combination is operated at both unconfined and confined

conditions (152 mm duct). The experimental plan covers a wide range of tests of

varying complexity, with the constituent flows measured separately and then in com-

bination. The duct is designed in such a way to enable the required measurements

to be taken at the inlet plane and at seven axial locations downstream of the

swirler-fuel injector combination. The measurements include the following quanti-

ties: the three components of mean and root mean square (rms) gas velocity as well

as Reynolds stresses, the three components of mean and rlns droplet velocity, Sauter

mean diameter, droplet size distribution, spatial distribution of droplets, cone

angle, fraction of liquid evaporated in the duct (vapor concentration), the static

pressure along the wall of the duct, and the inlet air temperature.

All the test configurations (Figure 2) are first operated free of injected par-

ticles (except for the laser anemometer seed), second with injected monodisperse

solid particles (50-micron glass beads) through a diameter jet tube, 24 mm, then

with injected solid particles of two sizes (50 and I00 _m glass beads), and

finally with a fuel spray (methanol) through an aircraft-type airblast atomizer.

*Work done under NASA Contract NAS3-24350.

_Onivecsity of California at Icvine.
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TASK 2--MODELING SENSITIVITY ANALYSIS

Allison had run its 2-D codes (parabolic and elliptic) to predict the distribution

of the flow field variables for all proposed flow and geometry test conditions of

the experimental test matrix. The main purpose of this task was to determine if

the planned experiment is sensitive to the significant variables and which variable

and boundary conditions had to be measured.

This effort resulted in two main modifications in the original test plan. First,

the 457.2 ram duct that is concentrically located around the nozzle/swirler assembly

to simulate the unconfined conditions was replaced by one made of screen mesh.

The reasoning was that the permeable wall would permit the entrainment of air that

would otherwise necessitate recirculation. Second, the flow rates through the fuel

nozzle and the swirler and the low velocity stream of confinement were optimized

to avoid spray impingements on the tube wall within the measurements region.

TASK 3--MEASUREMENTS

The efforts of this task have been directed to (i) the testing of the facility,

(2) the verification of the two-component laser interferometer diagnostics (see

Figure 3), and (3) the acquisition of test data in the spray chamber.

The utility, applicability, and accuracy of phase Doppler (PD) has been tested in

a series of experiments in which the technique has been compared to visibility/

intensity validation and laser diffraction using a Malvern (see ref. 1 and 2).

The PD compared well to the visibility technique with intensity validation (VIS/

IV), and exhibits major advantages in the dynamic range of both droplet size and

droplet velocity. In trials with laser diffraction using a commercial Malvern

analyzer, the composite line-of-sight measurement of spatial-SMD deduced from the

PD measurements compares favorably to the single line-of-sight Malvern measurement

of spatial-SMD. It is noteworthy that the two measurements are best aligned for

the Model-lndependent algorithm of the Malvern rather than the Rosin Rammler.

Example data for both the injection of 50 um beads and the methanol spray are

presented in Figures 4 and 5. Although data are taken at seven axial locations,

only four are shown for clarity. The glass bead data (Figure 5a) display the axial

mean velocity of both the bead and gaseous phase velocity, as well as the bead

number density. The centerline hump in the bead number density is clearly dis-

cernable in the photograph (Figure 4a). The methanol spray data (Figure 5b) re-

flect the strong influence of the swirl in both the radial spread of the spray and

the radial profiles of both SMD and mean axial velocity.

TASK 4--RESULTS AND ANALYSIS

Experimental data of Task 3 will be reduced and presented in a format suitable to

make direct comparison with model predictions and to quantify the effects of the

flow and geometric variables in various transport processes.

TASK 5--MODEL IMPROVEMENT

A mathematical model for turbulent evaporating sprays based on the recent work in

that area (ref. 3-5) will be validated in this effort. This model will include

improved submodels for spray injection, turbulence/droplet interaction, and droplet

evaporation.
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Figure a. Representative data: photographs.
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COHBUSTOR DIFFUSER INTERACTION PROGRAM

Ram Srinlvasan and Dante1 Thorp
Garrett Turbine Engine Co., Phoenix

INTRODUCTION

Advances in gas turbine engine performance are achieved by using compressor

systems with high stage loading and low part count, which result in high exit Mach
numbers. The diffuser and combustor systems in such engines should be optimized to

reduce system pressure loss and to maximize the engine thrust-to-weight ratio and

minimize length. The state-of-the-art combustor-diffuser systems do not meet these

requirements. Detailed understanding of the combustor-diffuser flow field inter-

action is required for designing advanced gas turbine engines.

An experimental study of the combustor-diffuser interaction (CDI) is being con-
ducted to obtain data for the evaluation and improvement of analytical models

applicable to a wide variety of diffuser designs. The CDI program consists of four

technical phases:

Phase I -

Phase II -

Phase Ill -

Phase IV -

Literature Search

Baseline Configuration

Parametric Configurations

Performance Configurations

Phase II of the program is in progress.

OBJECTIVES

Objectives of the Phase II efforts are to:

o Identify the mechanisms and the magnitude of aerodynamic losses in the

prediffuser, dome, and shroud regions of an annular combustor-diffuser

system

o Determine the effects of geometric changes in the prediffuser, dome, and

shroud wall on aerodynamic losses and loss mechanisms

0 Obtain a data base that can be used to assess advanced numerical aerody-

namic computer models for predicting flowfield conditions in an annular

combustor-diffuser system

0 Assess the ability of current analytical models to predict flowfield char-
acteristics in annular combustor-diffuser systems, including pressure dis-

tributions

o Upgrade the analytical models based on the experimental data for flowfield

*Work done under USAF Contract F33615-84-C-2427.
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DESCRIPTIONOFTEST CONDITIONS AND RIG

The test rig is a 60-degree sector of a full annular combustor-diffuser system
whose cross-sectional details are shown in Figure 1. Air flow through the rig is

established by connecting discharge ducts to vacuum lines. The airflow rate in each
of the three lines is controlled to produce the desired flow split and a rig inlet

Mach number of 0.35. The test rig performance evaluation is being made for 15 dif-
ferent flow conditions as shown in Table 1.

RESULTS

Water flow visualization tests were performed for all 15 flow conditions. The

streamline patterns were photographed and compared with predicted results, which

showed good agreement. A typical comparison is shown in Figure 2 for one of the
test conditions. Subsequent to the flow visualization tests, detailed pressure and
wall shear stress distribution measurements were made for these flow conditions.

The instrumentation for pressure measurements are shown in Figure 3.

Shear stress distributions were measured only along the prediffuser walls

(Figure 4). These data are being processed. The three-component LDV system
(Figure 5) has been set up, and LDV measurements in the CDI test rig will be
initiated to obtain detailed velocity field and turbulence quantities. Analytical

model assessment and upgrade efforts will be performed in conjunction with the LDV

measurements. Design efforts of the test rig for Phase Ill (Parametric Configura-

tions) are underway. Figure 6 shows the configurations which will be test evaluated

during this phase.
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TABLEI. FLOWCONDITIONSUSEDDURINGPHASEII TESTING

Percent Flow Split

Test Outer Inner
No. Annulus Dome Annulus

1

2

3

4

5

6

7

8

9

10

ii

12

13

14

15

32.9

40.0

48.0

55.0

60.0

26.8

32.5

39.0

44.7

48.8

20.6

25.0

30.0

34.4

37.5

20.0

20.0

20.0

20.0

20.0

35.0

35.0

35.0

35.0

35.0

50.0

50.0

50.0

50.0

50.0

47.1

40.0

32.0

25.0

2O.O

38.2

32.5

20.3

20.3

16.2

29.4

25.0

20.0

15.6

12.5
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EFFICIENT NUMERICAL TECHNIQUES FOR COMPLEX FLUID FLOWS

Suhas V. Patankar

Department of Mechanical Engineering, University of Minnesota

INTRODUCTION

The use of computational methods for the prediction of multi-dimensional recir-

culating flows has been continuously increasing over the recent years. As the nu-

merical techniques become more powerful, they are being applied to even more chal-

lenging problems encountered in combustion chambers, gas turbines, rotating machin-

ery, heat exchangers, and other devices. Although computation is far less expensive

than full-scale testing, the cost of a computational run is still substantial.

Therefore, attempts are continually being made for improving the accuracy and effi-

ciency of numerical techniques so that the predictions of a given accuracy can be
obtained at a modest cost.

The central feature in any flow prediction method is the treatment of the cou-

pling between the momentum and continuity equations. In natural-convection flows,

the energy equation also becomes strongly coupled with the momentum equations. Be-

cause of the nonlinear nature of the coupling, these equations are solved iterative-

ly. Iterative methods are often prone to slow convergence, divergence, and extreme

sensitivity to underrelaxation factors.

The aim of the present research is to develop more efficient and reliable solu-

tion schemes for the coupled flow equations. Such schemes will significantly reduce

the expense of computing complex flows encountered in combustion chambers, gas tur-

bines, heat exchangers, and other practical equipment.

In the work completed so far, a technique employing norm reduction in conjunc-

tine with the successive-substitution and Newton-Raphson techniques has been devel-

oped. Also, a block-correction procedure for the flow equations is currently being
formulated and tested.

NORM REDUCTION TECHNIQUES

The development of a number of methods for solving strongly coupled equations

has been reported in reference i. The recommended method there is a combination of

the successive-substitution and Newton-Raphson methods coupled with a norm reduction

technique.

The central idea of the method will now be described. The linearized discreti-

zation equations are solved by a direct method, such as the sparse-matrix LU decom-

position. The linearization can be of two kinds. If the unknown coefficients are

simply evaluated from the currently available values of the dependent variables, the

linearization is called successive substitution. In the Newton-Raphson method, the

anticipated change in the coefficients is taken into account via the_r_first deriva-

tives with respect to the dependent variables.

* Work done under NASA Grant NAG 3-596
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The solution of the linearized equations predicts a change in the values of the

variables. However, instead of accepting this change as is, it is multiplied by a

constant. (This constant can be imagined to be a kind of under- or over-relaxation

factor.) The value of this constant multiplier is found by requiring that the norm

of the residual vector (i.e., the sum of the squares of the residuals of all the

equations) be a minimum. This minimization search produces a kind of "optimum"

underrelaxation of the dependent variables.

The norm minimization (or reduction) can be used with either successive-substi-

tution or Newton-Raphson linearization. When the current estimates are close to the

final solution, the Newton-Raphson technique is very efficient. But for initial

guesses that are far from the solution, the technique often diverges. Therefore,

the practice found satisfactory for all the flows tested was to employ the succes-

sive-substitution linearization until the norm became less than a small quantity and

then to switch to the Newton-Raphson linearization until the final convergence. Be-

cause of the combination of the two linearization practices, the technique is called

the hybrid method in reference i.

The hybrid method and many other alternative schemes (some of which are based

on the Broyden methods described in reference 2) were tested on two flow configura-

tions: the flow in a driven cavity at different Reynolds numbers and the natural

convection flow in an enclosure with hot and cold walls at different Rayleigh num-

bers.

For the driven cavity problem, solutions were obtained by the hybrid method in

at least one-third the computer time required for the iterative method SIMPLER. For

the natural convection problem, most methods either diverged or converged extremely

slowly as the Rayleigh number was increased. The hybrid method, however, converged

rapidly and required a very modest amount of computer time. By using the hybrid

method, it was possible to obtain convergence in 25 iterations at a Rayleigh number

of 107 when a zero initial guess was used for all variables. If the results for a

lower Rayleigh number could be used as the initial guess, it was possible to obtain

solutions at a Rayleigh number of 109 • It is believed that, for the first time,

solutions have been obtained for such a high Rayleigh number (with a Prandtl number

of 0.71). Iterative methods such as SIMPLER failed to converge even after i000

iterations.

BLOCK CORRECTION TECHNIQUE

Work is currently in progress on another approach for accelerating the conver-

gence rate of an iterative procedure such as SIMPLER. In the proposed technique,

the velocity and pressure values are adjusted through a block correction procedure.

Here the calculation domain is considered to be composed of several large blocks.

Each block contains a number of grid points (and hence control volumes). It is pro-

posed that the values of a variable for grid points within a given block will re-
ceive a uniform correction. These corrections are calculated such that the integral

conservation of momentum and continuity is satisfied for each block. The block-

correction equations thus resemble the discretization equations for momentum and

continuity but are formulated on much coarser grid. The solution of these equations

by a direct or iterative method is rather straightforward.

Initial testing of this apprach shows that, for fine grids, there is a notice-

able improvement in the computational effort required to obtain a converged solution.
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IMPROVED NUMERICAL METHODS FOR TURBULENT VISCOUS RECIRCULATING FLOWS*

J.P. Van Doormaal+, A. Turan and G.D. Raithby+

AVCO Research Laboratory, Inc.

INTRODUCTION

The objective of the present study is to improve both the accuracy and

computational efficiency of existing numerical techniques used to predict

viscous recirculating flows in combustors. This paper presents a review of the

status of the study along with some illustrative results.

The effort to improve the numerical techniques consists of the following

three technical tasks:

(1) selection of numerical techniques to be evaluated

(2) two-dimensional evaluation of selected techniques

(3) three-dimensional evaluation of technique(s) recommended in Task 2.

SELECTION OF NUMERICAL TECHNIQUES

Based on the citeria of accuracy, stability and boundedness the following
discretization schemes were selected for evaluation in two-dimensional

problems:

(i) Second Order Upwind (SOU) differencing

(2) Operator Compact Implicit (OCI) differencing

(3) improved Skewed Upstream Differencing Schemes (SUDS).

To enhance computational efficiency the methods selected for two-

dimensional evaluation include the Strongly Implicit Procedure (SIP), for

solving for the pressure correction of SIMPLE or its variants, accelerated by

the following techniques:

(I) Conjugate Gradient (CG) acceleration

(2) Block Correction (BC) acceleration

(3) Additive Correction Multigrid (ACM) acceleration.

TWO-DIMENSIONAL EVALUATION OF SELECTED TECHNIQUES

Accuracy Improvement

Each of the selected techniques for improving accuracy was implemented

adopting a conservative control volume approach and boundedness improvement

strategies which ensured unique solutions and which posed no solution

difficulties. The evaluation of the techniques for improving accuracy were

carried out on a number of test problems including

(I) transport of a scalar with a step profile at the inlet and uniform

flow

(2) transport of a scalar with a smeared step profile at the inlet and

curved flow

* Work done under NASA contract NAS3-24351

+ Advanced Scietific Computing Ltd.
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(3) transport of a scalar with a unit source and uniform flow

(4) transport of a scalar with a distributed source and uniform flow

(5) laminar shear driven flow in a square cavity

(6) laminar flow over a backward facing step
(7) turbulent coannular flow.

For illustrative purposes results of problems 2 and 4 are presented in this

paper. For problem 2, the predicted outlet profiles of the scalar, shown in

Figure l, are used to illustrate the degree to which each discretization scheme

exhibits smearing of gradients and/or non-physical overshoots or undershoots

(ie lack of boundedness). The results of problem 4, as shown in Figure 2

illustrate the accuracy and rate of convergence with grid refinement of each of
the discretization schemes.

Implementing SOU in a conservative framework results in a scheme with

negative influence coefficients which, in turn, introduce the possibility of

overshoots and undershoots in the numerical solution, see Fig. I. Some

attempts, including the one described in reference I, have been made to reduce

or eliminate this unboundedness of SOU. However, all attempts to date result in

schemes which either are not conservative or do not guarantee unique numerical

results. Also, as shown in Fig 1., SOU results can exhibit smearing of

gradients when relatively coarse grids are used. Figure 2 illustrates the

second order rate of convergence of SOU on fine grids. However, the level of

error of SOU is notably higher than that of other second order schemes

evaluated in the present study.

At the outset of the present study there were several OCI schemes with a

formal accuracy of fourth order available in the literature. However, these

schemes were not conservative. The development of a conservative Control Volume

based OCI (CV-OCI) was undertaken in this study. The result of this effort was

a CV-OCI scheme of exponential type which exhibits a second order rate of

convergence with grid refinement, see Fig. 2. Bounded CV-0CI solutions can be

ensured for one-dimensional problems, but, as illustrated in Fig. I, a CV-OCI

scheme which ensures bounded one-dimensional solutions is not guaranteed to

produce bounded solutions for multi-dimensional problems.

For problems where the Peclet number is high, both the SOU and CV-OCI

schemes can be viewed as corrected Upwind Differencing Schemes (UDS). The

corrections to UDS that are employed in these schemes are necessary to

eliminate the numerical diffusion of UDS and its variants. However, for multi-

dimensional flows, it can be shown that these corrections are responsible for
the unbounded nature of the schemes. An alternative to the corrected UDS

approach is to use SUDS. Although the numerical solutions of the original SUDS

of Raithby exhibitted no numerical diffusion, significant non-physical

overshoots and undershoots were noted for some problems, also, the original

SUDS was only a first order scheme. Recently, both Raw and Huget, see

references 2 and 3, have proposed improvements to the original SUDS. These

improvements include a Physical Advection Correction (PAC) to SUDS and, a flux

element approach with two integration points per control volume face and a

Linear Profile (LP) assumption along the flux element edges. The PAC is

designed to improve the accuracy of SUDS by including the effects of diffusion

and source terms on the advection term. The flux element approach was adopted

to improve the boundedness of SUDS as well as to simplify the implementation of

SUDS. The effectiveness of these improvements and other refinements developed

throughout the course of this study are illustrated in Figures 1 and 2. Note

the minimal overshoot and undershoot of LP-SUDS-PAC as well as its second order

rate of convergence and low error levels.

In spite of the efforts to reduce overshoots and undershoots and to

improve the accuracy of the discretization schemes, the SOU, CV-0CI and LP-
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SUDSschemesare not sufficiently bounded to be used for predicting the

turbulent kinetic energy and dissipation. It is essential that solutions for

these turbulence quantities are bounded. Two schemes which ensure this

boundedness are the bounded skew schemes BSUDSI and BSUDS2, see reference 4.

Unfortunately, since both schemes are bounded by including a sufficient

component of UDS, accuracy improvements are noted only on relative fine grids.

An alternative is to modify the LP-SUDS scheme to ensure that solutions are

bounded. One such scheme is the Mass Weighted (MW) SUDS where the linear

profile assumption along flux element edges is replaced by mass weighted

averaging. Of course the boundedness of MW-SUDS, as illustrated in Fig. I, is

achieved at the expense of accuracy. Nevertheless, as can be seen in Figures 1

and 2, the accuracy of MW-SUDS is a significant improvement over the accuracy

of UDS.

Computational Efficiency Improvements
The evaluation of the various techniques for enhancing computational

efficiency were carried out on a number of problems including problems 5,6 and

7. Results for problems 5 and 6 are detailed in reference 5.

Preliminary evaluation of the convergence enhancement techniques revealed

that conjugate gradient acceleration is very effective for coarse grids.

However, it was found that the effectiveness of CG diminished significantly

with grid refinement. This diminshed effectiveness arises because substantial

improvements in the numerical solution occur only after a sufficient and often

excessive number of iterations have been performed such that all of the

dominant orthogonal basis vectors of the solution have been set up.

The BC accleration is, by design, effective when the solution for pressure

correction is predominantly one-dimensional. Surprisingly, BC acceleration is

also often effective even when a prodominant one-dimensional component of the

solution is not evident. For instance, the use of BC for problem 5 with a 48x48

grid results in a 40 percent reduction in CPU requirements.

The additive correction multigrid acceleration technique is designed to

systematically account for components of the solution in all directions by

ensuring that conservation is satisfied on coarse grids. The use of ACM

acceleration results in reductions in CPU requirements similar to those of BC.

In addition to the evaluation of the techniques used to accelerate the

procedure for solving for pressure correction, additional methods for improving

efficiency were considered. One computationally expensive aspect of the

existing solution procedures for incompressible flows is the method chosen to

account for the coupling between pressure and velocity. The current SIMPLE-like

methods such as the PISO variant of SIMPLER require an appropriate amount of

underrelaxation and an excessive number of costly coefficient iterations. To

overcome these difficulties the solution strategy which is employed by most

SIMPLE-like methods was modified. Instead of performing the calculations for

velocity and pressure correction, u*,v* and p', only once before re-assembling

coefficients, the SIMPLE-like method was repeated several times. Using this

strategy, the parameter used to underrelax the momentum equations could be

increased from 0.5 to 0.9 and the number of coefficient assembly iterations

reduced by over 30 percent. Combining the new strategy with SIP-ACM reductions

in CPU requirements of up to 70 percent were noted for laminar flows. For

turbulent flows reductions in CPU requirements, ranging from 25 to 40 percent,

were not as large.
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RECOMMENDATION FOR THREE-DIMENSIONAL EVALUATION

Based on the results of two-dimensioanl evaluation outlined above it is

recommended that the following techniques be implemented for three-dimensional
evaluation

(I) modified SUDS to improve accuracy

(2) SIP-ACM to improve computational efficiency.

The implementation of modified SUDS will ensure that, on the coarse grids often

used for three-dimensional predictions, signficantly more accurate solutions

than UDS with little or, if required, no overshoots and undershoots present.

The ACM technique is recommended over BC because the former technique is

expected to have a wider range of applicability and is expected to provide even

more dramatic reductions in CPU requirements for three-dimensional problems.
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INTRODUCTION

The objective of this investigation was the experimental evaluation of bulk turbu-

lence and boundary thickness influence on the secondary flow development in a square.

90 ° turning duct. A three-dimensional laser velocimetry system was utilized to measure

the mean and fluctuating components of velocity in the large curved duct facility devel-

oped under NASA Contract NAS3-23278. The entrance flow field was conditioned by a

combination of increased inlet duct length and square bar turbulence generators. The

results from this investigation, with entrance boundary layer thickness of 20-percent

and bulk turbulence level of 6-percent, were compared with the thin boundary layer

results documented in NASA CR-I748tl (Ref 1.).

Tile three-dimensional development of the viscous shear layers in the curved duct

has a strong influence on the complete flow field. Since ducted three-dimensional flows

are found in many engineering applications, including gas turbine engine_, and con-

tain high turbulence levels and high wall heat transfer rates, they present a difficult

challenge to computational fluid mechanics codes. Turbulence modeling remains one

of significant constraints to CFD advances due to inadequate physical understanding

and experimental definition of turbulent shear flows.

The results of this investigation expand the curved duct data base to higher turbu-

lence levels and thicker entrance boundary layers. The experimental resuhs provide a

challenging benchmark data base for computational fluid dynamics code development

and validation. The variation of inlet bulk-turbulence intensity provides additional

information to aid in turbulence model evaluation.

FACILITY AND INSTRUMENTATION

The experimental facility features modular tunnel components which allow flow

measurements every l;" in the 90' bend and at one duct width upstream and down-

stream of the bend. The 25.4 i'm (10 in) square cross-section tunnel is constructed

with 13 to l area-ratio bell mouth contoured to provide a uniform flow. An additional

four duct widths of entrance duct length were fabricated and installed to provide the

*Work aone under NASA Grant NAG3-617.
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additional boundary layer thickness. Two square-bar turbulence generator grids were

fabricated and tested for flow quality and level of turbulence intensity. A 42 percent

blockage grid was selected for the experimental investigation, and it produced an av-

erage turbulence.intensity of 8-percent, two duct widths dow.nstream_ anfl 6,percent,

three duct widths do._vnstream of the grid. Referejtce 2. provided -the primary design

data for the square bar grids. During the turbulence grid evaluation" the curved duct

static wall pressures were recorded to evaluate gross flow-field changes by comparison

with previous wall pressure data. No significant wall pressure changes were observed.

The primary instrumentation was a three-component laser velocimeter which uti-

lized two color beams and Bragg diffraction beam splitting/frequency shifting to sep-

arate the three simultaneous, orthogonal, velocity components. The laser velocimeter

signal processors determine the values of velocity from water droplet seed particles

crossing the moving fringe probe volume. The data is processed on-line by a mini-

computer to yield real time values of mean and fluctuating velocity components, see

Ref 1 for a complete description of the LV system. To assure data quality the laser ve-

locimetry data was compared with pitot probe and hot-wire anemometer measurements

in the entrance region.

EXP ERIMENTAL INVESTIGATION

With the 42 percent blockage turbulence grid located three tunnel widths upstream

of the entrance measurement station, detailed velocity surveys were conducted at six

stations (-1D, 0°. 30", 60°, 90 °,÷ID). All data was taken at one Reynolds number

corresponding to a tunnel bulk velocity of 10 meters/see. At this test condition the

wall boundary layers are fully turbulent ahead of the turbulence grid, and behind the

grid typical wall turbulence levels of 10-15 percent remained with a core flow bulk

turbulence of 6-8 percent.

The orthogonal laser velocimeter data was processed to yield mean velocity corn-

ponents U. V, W and the fluctuating components u_v'w ' calculated from the standard

deviation on U, V, W. A minimum of 300 data samples was acquired for each flow field

point. Data for each measurement station was acquired by computer controlled pre-

cision mill-bed traverse. All data was corrected to standard test conditions and non-

dimensionalized on duct bulk velo, ry.

This baseline set of data contains the influence of both thicker entrance boundarv

layer and bulk turbulence. To evaluate the separate influence of the thicker boundary

layer on the downstream flow development,the 60 ') station was measured without the

grid installed. The two sets of data for the 60 ° station contain the separate influences

of boundary layer thickness and bulk turbulence.
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DATA PRESENTATION ANI) DISCUSSION

Due the limited space in this paper, only the data from the 60 ° station will be

presented. First it should be noted that both sets of data |lax'('. very similar flow char-

acteristics, thus the general flow field described by Taylor, Whitelaw, and Yianneskis

in reference 3 has not been invalidated by addition of the turbulence grid. Figures 1

and 2 present respectively the axial velocity profiles ['or the thick boundary layer and

thick boundary layer with bulk turbulence. Away from the wall shear layers, the nearly

linear velocity gradient across the duct is nearly identical for both flows. The major

axial velocity differences occurs in the strong viscous interaction region along the inner

wall. The axial velocity results from this investigation and thin boundary layer inw.'sti-

gation (Ref 1.) are nearly identical outside of the strong viscous wall interaction region.

To satisfy continuity higher center-line velocities are associated with the thicker wall

boundary layers. The secondary flow velocities V and W are much more sensitive to

the entrance region boundary layer thickness.

The crossftow velocity vector {)lots for the 60 ° station show clearly the strong in-

fluence of boundary laver thickness on the magnitude of the crossflow velocity (Fig. :'

and 4.) The larger natural turbulent boundary layer produces a strong crossflow de-

velopment with the "'vortex" center located farther from the duct walls. The increased

crossflow velocities may be related directly to the axial momentum deficit entering the

curved duct. _Vhen the turbulence grid is introduced into the developing turbulent

boundary layer, the boundary layer is partially re-energized resulting in reduced cross

flow velocities as shown in figure t.

The turbulence intensity distributions for the 60" station are compared in figures

5 and 6. The bulk levels of turbulence at the entrance .station were :; percent and

6 percent respectively for these two flows. The bulk turbulence level has decayed to

t-percent from a level of N-percent just behind the grid as shown in Figure 6.

The results of this investigation are consistent with the turbulent transport of

momentum models. The increase in entrance bulk turbulence from 2-percent to 6-

percent has a significant influence on the axial velocity and crossflow development in

the curved duct. The wall turbulence intensity and distribution matches the axial shear

layer distribution and correlates well with the cross[-tow velocities, figures 1. 2. 3, ,I, 5,
and 6.

A complete summary of the data from this investigation has been (tocun|ented

in a NASA report soon to be publi.-hcd and (tistribuled to lhe }lOS'l" participants.

3'his report compares and analyzes the resulls from both the thick and thin enlrance

boundary layer investigations and expands the experimental benchmark data base for
curved duct flows.
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INTRODUCTION

The Primary basis for heat transfer analysis of turbine airfoils is

experimental data obtained in linear cascades. These data have been very
valuable in identifying the major heat transfer and fluid flow features of
a turbine airfoil. The question of major interest is how well all of these
data translate to the rotating turbine stage. It is known from the work of

Lokay and Trushin (Ref. 1) that average heat transfer coefficients on the
rotor may be as much as 40 percent above the values measured on the same
blades non-rotating. Recent work by Dunn and Holt (Ref. 2) supports the
conclusion of Ref. 1. What is lacking is a set of data from a rotating

system which is of sufficient detail as to make careful local comparisons
between static cascade and rotor blade heat transfer. In addition, data is
needed in a rotating system in which there is sufficient documentation of
the flow field to support the computer analyses being developed today.

Other important questions include the impact of both random and periodic
unsteadiness on both the rotor and stator airfoil heat transfer. The
random unsteadiness arises from stage inlet turbulence and wake generated
turbulence and the periodic unsteadiness arises from blade passing effects.

A final question is the influence, if any, of the first stator row and
first stator inlet turbulence on the heat transfer of the second stator row

after the flow has been passed through the rotor.

OBJECTIVES

The first program objective is to obtain a detailed set of heat
transfer coefficients along the midspan of a stator and a rotor in a
rotating turbine stage. These data are to be such that the rotor data can
be compared directly with data taken in a static cascade. The data are to
be compared to some standard analysis of blade boundary layer heat transfer
which is in use today. In addition to providing this all-important

comparison between rotating and stationary data, this experiment should
provide important insight to the more elaborate full three-dimensional

programs being proposed for future research. A second program objective is

*Work done under NASA Contract NAS 3-2317.
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to obtain a detailed set of heat transfer coefficients along the midspan of

a stator located in the wake of an upstream turbine stage. Particular
focus here is on the relative circumferential location of the first and

second stators. Both program objectives will be carried out at two levels

of inlet turbulence. The low level will be on the order of 1 percent while

the high level will be on the order of 10 percent which is more typical of

combustor exit turbulence intensity. The final program objective is to
improve the anlytical capability to predict the experimental data.

DESCRIPTION OF EXPERIMENTAL EQUIPMENT AND TEST CONDITIONS

The experimental portion of this study was conducted in large-scale

(aproximately 5x engine), ambient temperature, rotating turbine model

configured in both single stage and stage-and-a-half arrangements. A

cross-sectional diagram of the turbine model in the stage-and-a-half

configuration is presented in Figure I. Heat transfer measurements were

obtained using low-conductivity airfoils with miniature thermocoulpes

welded to a thin, electrically heated surface skin. Heat transfer data

were acquired for various combinations of low or high inlet turbulence

intensity, flow coefficient, first-stator/rotor axial spacing, Reynolds

number and relative circumferential position of the first and second

stators. High levels of inlet turbulence were generated using a coarse

biplane grid located 2 1/2 axial chords upstream of the stator leading edge

plane(see Figure I). Aerodynamic measurements obtained as part of the

program include distributions of the mean and fluctuating velocities at the

turbine inlet and, for each airfoil row, midspan airfoil surface pressures

and circumferential distributions of the downstream steady state pressure

and fluctuating velocities.

Time-mean velocity distributions at the inlet to the turbine model,

obtained both with and without the turbulence grid installed, are presented

in Figures 2a and 2b. These figures indicate that, both with and without

the grid, the spanwise variations of mean velocity at each pitch location

were quite small and that the pitchwise velocity variations were in

excellent agreement with a potential flow prediction. The distributions of

streamwise turbulence intensity measured with and without the grid are

presented in Figure 3. As shown in Figure 3a, with the grid out the

midspan region turbulence intensity was slightly greater than 1/2% with

much higher levels in the endwall boundary layers. With the grid in, as

shown in Figure 3b, the midspan turbulence intensity averaged 9.8%.

Spectral measurements of the grid generated turbulence indicated that it

was in excellent agreement with the von Karman isotropic spectrum.

RESULTS

Distributions of heat transfer along the various airfoil surfaces are

presented as Stanton numbers based on exit conditions vs dimensionless
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surface distance. Included in each figure are
coefficient and axial spacing for the data set
whether the turbulence grid was IN or OUT.

the specific flow

and a note indicating

Midspan first stator heat transfer distribution data obtained for the

single-stage configuration for three Reynolds numbers and low inlet

turbulence are presented in Figure 4. The experimental data are compared

to distributions predicted by the UTRC two-dimensional finite difference

boundary layer code (ABLE, Ref.3). Predictions for both fully laminar (L)

and fully turbulent (T) flow (Cebeci-Smith, Ref.4) are included. On the

pressure surface, agreement with the fully laminar prediction was excellent

for all three Reynolds numbers. Evidence of possible boundary layer

transition near the pressure surface trailing edge progressively decreased

with decreasing Reynolds number. On the suction surface the agreement

between the laminar prediction and the upstream half of the data was also

excellent in all cases. A careful examination of the data near S/Bx=I

indicates that transition moved progressively, albeit slightly, downstream

as Reynolds number decreased. Finally for S/Bx>I both the highest

andlowest Re data agreed xery well with the two-dimensional fully turbulent
prediction. For Re=52x10 _ an anamolous discrepancy of about 10% between

theory and data resulted for this region. One possible explanation for

this shift is that an undetected shift in model heater power occured during

the process of automatic data acquisition.

The primary conclusion reached from Fig. 4 is that the facility,

turbine model and instrumentation system all behaved as expected. As the

Reynolds number changed for this relatively idealized first stator flow the

data and two-dimensioinal theory remained in excellent agreement.

Rotor heat transfer distributions for the single-stage configuration

are presented in Figure 5 for three Reynolds numbers. Again each data set

is shown compared with the two-dimensional fully turbulent prediction for

that particular Reynolds number. On the suction surface there was an

increasingly significant, both in size and heat transfer level,

transitional region as the Reynolds number dropped. For all cases,

however, the heat transfer data agreed reasonably well with the

two-dimensional, fully turbulent boundary layer prediction in the trailing

edge region.

The rotor pressure surface heat transfer distributions shown in

Figures 5 reveal a dependence on the Reynolds number. At the lightest

Reynolds number the pressure surface heat transfer is significantly higher

(50 to 80% higher) than the fully turbulent prediction. As the Reynolds

number drops the data approach their respective predictions. Elevated

levels of pressure surface heat transfer were observed for numerous

airfoil-flow condition combinations in this investigation. Discussion of

the phenomenon will follow as more examples are presented.

The effects on the first stage heat transfer distributions produced by

raising the inlet turbulence intensity are shown in Figure 6. The impact

of the high inlet turbulence on the first stator distribution was dramatic
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with significant increases of heat transfer on the leading edge and along
both suction and pressure surfaces. On the suction surface the increased
turbulence movedthe location of transition well upstream from S/Bx=l.O to
about S/Bx=0.3. For this high level of turbulence, then, transition
occured in a region of accelerating flow instead of near the minimum

pressure point. Another effect of the turbulence on the suction surface

distribution was to produce considerably enhanced heat transfer in the

fully turbulent region of the flow. The effect of the higher turbulence

level was also very evident along the stator pressure surface. For the low

turbulence case the heat transfer was essentially laminar while with high

turbulence the measured heat transfer was as much as 60% greater than the

two-dimensional fully turbulent prediction. The data of Figure 6a
constitute another example of an airfoil-flow condition combination for

which the measured/pressure surface heat transfer far exceeded fully
turbulent levels.

On the rotor, Figure 6b, the effects produced by increasing the inlet

turbulence were much less dramatic than for the first stator. A much

smaller change to the heat transfer resulted for the rotor because even the

baseline (low inlet turbulence) rotor flow is highly disturbed by the first

stator wakes. The incremental change in the distrubance level produced by
installing the grid was much less for the rotor than for the first stator.

On the rotor suction surface, transition appears to have moved upstream to

S/Bxtx_0.2 with the increased turbulence level. Changes downstream of

transition in the fully turbulent region were negligible. The only region

of the rotor pressure surface which showed any effects from the increased
turbulence was from -0.5<S/Bx<O.

Figure 7 displays the impact of Reynolds number on the first stator

heat transfer distributions with high inlet turbulence. On the suction

surface Figure 7 shows an orderly, progressive downstream movement of the

transition zone with decreasing Reynolds number. As the Reynolds number

decreased the length of the near-laminar heat transfer zone increased and

the length of the fully turbulent zone contracted. On the pressure surface

the data show that for the highest Reynolds number the measured h_at
transfer greatly exceeded the turbulent prediction while for Re < 4xlO

there was near agreement between theory and experiment.

A number of examples have been presented in which pressure surface

heat transfer rates significantly exceeded two-dimensional, fully turbulent

predictions. These results indicate that there can be an interaction

between the effects of concave surface curvature, Reynolds number and the

level of free-stream disturbance that may produce significant heat transfer

enhancement. One possibility is that for certain critical combinations of

surface curvature, Res, acceleration and free-stream disturbance level,
important Goertler vortex systems are produced in the boundary layer.

Rotor heat transfer distributions obtained for an extremely wide range

of test flow coefficients are presented in Figure 8. These results reflect

operation at severe off-design conditions and are included to demonstrate

the impact on heat transfer for such extreme excursions. On the suction

surface, for S/Bx<0.7, the local Stanton numbers decreased with Cx/U until
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they approached laminar heat transfer rates. On the pressure surface there
was a continuous, systematic increase in Stanton numbersthrough the entire
range of test flow coefficients. The appearance of the distributions
suggests that for Cx/U <0.5 the flow probably separated from the pressure
surface. At these extreme negative incidence values the heat transfer was
evidently dominated by a large, possible unsteady, pressure surface
separation bubble.

Heat transfer distributions measured on the second stator are
presented in Figure 9. These data were obtained for five relative
circumferential positions of the first and second stators with and without
the grid.

Probably the most striking feature of the second stator heat transfer
distributions, both for the grid-in and grid-out are the very high values
of Stanton numberrelative to the two-dimensional turbulent boundary layer
prediction. On the pressure surface the heat transfer data are 50-100%
above the prediction, a result which is in general agreementwith most of
the first stator and rotor pressure surface measurements. On the suction
surface, however, the second vane heat transfer is entirely different from
the first stage results. Not only are the suction surface heat transfer
data well in excess of the two-dimensional prediction but the data and
theory are diverging with increasing S. It appears that by the second
stator the flow field has becomeso contaminated by secondary flow that a
two-dimensional model is inappropriate. The effects associated with stator
I/stator 2 relative location appear to have been minor.

A detailed distribution of the heat transfer measuredin the leading
edge region of the first stator with the grid in is given in Figure i0. For
these figures the heat transfer data are presented in the form of the
Froessling number Nu/_q_-n where the Reynolds number is based on the
diameter of the leading edge. Locations are given as S/R., the surface
distance divided by the nose radius. Note that, unlikeNa cylinder in
crossflow, the theoretical heat transfer distribution is not symmetrical
about the stagnation point. In addition, since the acceleration is very
muchstronger in the direction of the suction surface, the maximum
predicted heat transfer rate is not at the stagnation point. The results
of Figure I0 are quite surprising in that the heat transfer measuredfor
the highly turbulent test flow was only about 20% greater than the
predicted laminar levels. Data taken in a numberof studies of cylinders
in crossflows have indicated that freestream turbulence has a very strong
effect on the stagnation region heat transfer (see Lowery and Vachon,
Ref.5). It may be that the effects of turbulence are muchlarger for free
cylinders than for airfoil leading edges.

A comparison of the heat transfer distribution measuredin a previous
investigation in a cascade (Ref.6) with the data obtained on the rotor of
the present study is presented in Figure ii. These two data sets were
obtained at somewhatdifferent Reynolds numbersso predicted heat transfer
distributions are given for both conditions. An examination of Figure ii
indicates that, on the suction surface, transition was somewhatearlier for
the rotating case than for the blade cascade. This result is not
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surprising as the disturbance level for the rotating blade was considerably

higher than the lZ turbulence level at the entrance plane of the cascade.

When allowance is made for the effect of Reynolds number, the

post-transitional (S/Bx > 0.8) results for the rotating and cascade tests

were practically identical. There was, however, a significant difference

between the heat transfer distributions measured on the pressure surface

with the cascade data falling well below the set from the rotating blade.

This provides an additional piece of evidence which indicates that strong

enhancement of fully turbulent, concave surface heat transfer may only

occur for high levels of free-stream disturbance. Whatever the cause, the

major difference between the rotating and non-rotating airfoil midspan heat

transfer distributions was the considerably higher levels on

the pressure surface of the rotating airfoil.

The heat transfer data measured in the leading edge region of the

cascade airfoils are presented in Figure 12. Included in Figure 12 are the

predicted laminar distributions for this airfoil as well as the comparable

leading edge data from the rotating cases. Because of the instrumentaiton

techniques employed the experimental uncertainty is considerably greater

for the cascade leading edge data than for the rotating airfoil. Despite

the data scatter associated with the cascade model it is still clear that

the stagnation region heat transfer was reasonably well predicted by the

laminar model. There was no evidence that the moderate (1%) free-stream

turbulence in the cascade tunnel substantially enhanced the heat transfer

in the leading edge region of the airfoil.

,
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INTRODUCTION

In gas turbines, the blades of axial turbine stages rotate in

close proximity to a stationary peripheral wall (sometimes termed an

outer ring or stationary shroud). Differential expansion of the
turbine wheel, blades, and the shroud causes variations in the size of

the clearance gap between blade tip and stationary shroud. The

necessity to tolerate this differential thermal expansion dictates
that the clearance gap cannot be eliminated altogether, despite

accurate engine machining [1].

Pressure differences between the pressure and suction sides of a

blade drives a flow through the clearance gap. This flow, often

referred as the "tip leakage" flow, is detrimental to engine

performance. The primary detrimental effect of tip leakage flow is the
reduction of turbine stage efficiency, and a second important effect
concerns the convective heat transfer associated with the flow. The

surface area at the blade tip in contact with the hot working gas

represents an additional thermal loading on the blade which, together
with heat transfer to the suction and pressure side surface area, must

be removed by the blade internal cooling flows [2].

Very limited information on turbine tip heat transfer and fluid
flow has been reported to date [3-6], and almost all of the published

work dealing with clearance gap flows involves consideration only of

plain flat blade tips. However, a strategy commonly employed to reduce

tip flow and heat transfer is to groove a single rectangular cavity
chordwise along the blade tip. The groove acts like the cell of a

labyrinth seal to increase the pressure drop and thus reduce the flow
for a given pressure differential across the tip. The reduction of the

flow will also act to reduce heat transfer. A schematic diagram

representing the geometry of a grooved blade tip, viewed from a

coordinate system fixed relative to the blade, is shown in Fig. I. As

seen in the figure, the outer shroud can be considered moving in the

general direction from the suction side to the pressure side, with

relative velocity equal to U.. The leakage flow, its mean value

denoted by U, is driven by the pressure difference between two sides

of the blade and flows in the direction opposite to the shroud motion.

*Work done under NASA Grant NAG 3-623
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With this general configuration in mind, the grooved tip problem can

be categorized as fluid flow and heat transfer over a shrouded

rectangular cavity.

• Both fluid flow and heat transfer over unshrouded, rectanguls_

cavities have been the subjects of extensive investigation for many

years [7]. The flow field over a cavity is characterized by flow

separation and shear layer reattachment resulting in complex flow

patterns with substantial effects on the friction drag and heat

transfer. Most studies have relied on flow visualization techniques

and/or heat and mass transfer data to obtain momentum and heat

transfer information in cavity flow [8-10]. In all cases, the cavity

problems studied have been considered as a flow system in which the

cavity is open to a usually well-specified approaching flow over an

otherwise smooth and stationary surface. The approaching flow may be a

wall boundary layer for external flow or a well developed chan_el

flow.

The grooved tip differs from the aforementioned unshrouded

situation by virtue of the confined nature of the geometry as well as

by the proximity of moving shroud. The degree of similarity between

the heat transfer characteristics of the grooved tip and those of

previous cavity studies has been unclear until recently. Metzger and

Bunker [ii], using a time-dependent paint coating technique, studied

the heat transfer for flow through a confined narrow slot-type channel

where one of the bounding walls contains a rectangular cavity° The

effect of shroud motion is not included in this study. Details of heat

transfer on the cavity surfaces are found to be largely dependent on

the size of gap clearance and the cavity aspect ratio. A semi-

empirical study by Mayle and Metzger [6], using a plain tip geometry,

has argued that the heat transfer from the blade tip is essentially

unaffected by the relative motion between blade and shroud. This

speculation, however, has not been justified for the grooved tip

situation. To gain further understanding of the convective heat

transfer in cavities with various degrees of relative shroud motion is

the primary objective of this study.

In the present work, experimental results concerned with the

local heat transfer characteristics on all surfaces of shrouded,

rectangular cavities are reported. The varying parameters include the

cavity depth-to-width ratio, D/W, gap clearance-to-cavity width ratio,

C/W, relative shroud moving speed, Uw/U, Reynolds number, Re = UC/_,

and relative orientation between the leakage flow direction and shroud

movement. Due to the problems associated with imperfect thermal

insulation and temperature depression, local studies using direct heat

transfer measurement are known to be difficult to perform and could

induce significant error. The naphthalene (Cl0R s) sublimation mass

transfer technique is instead employed herein facilitating better

control of the experiment. The mass transfer results can be

transformed into their counterparts in heat transfer by invoking an

analogy between those two transfer processes. More detailed

description of the analogy can be found in [12]. A brief discussion of

the mass transfer system used in this study is given as follows.
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SUBLIMING MASS TRANSFER SYSTEM

The mass transfer coefficient h m is given by

h m =

& (I)

PV _ W -- P_,

where, m is the mass transfer flux of naphthalene from a surface, Pv,w

is the vapor concentration of naphthalene at the surface, and p, is

the vapor mass concentration at the inlet of gap passage. In the

present study, p. is zero and Eq. (1) becomes

(2)

hm Pv ,

In addition, as the mass transfer system is essentially maintained

isothermal, the naphthalene vapor pressure and vapor concentration at
the surface are constant. This corresponds to a constant wall

temperature boundary condition in a heat transfer study.

Local mass transfer from a naphthalene surface can be evaluated

from the change in naphthalene thickness. The change of thickness due

to sublimation is given by

dy -
• dt (3)

P6

where p, is the density of solid naphthalene (_ 1.143 gm/cm3), and dy
and dt represent the change in naphthalene thickness and the
differential time duration, respectively. Note that dy and m are

functions of the local coordinate of the subliming surface. Combining

Eqs. (2) and (3), and integrating over the test duration yield the

time-averaged, local mass transfer coefficient

h= = p_ . Ay (4)
Pv , w " &t

The mass transfer Stanton number is defined by

st - h= (5)

As it is often the case that the wall temperature varies slightly

during test run, Pv,w can be represented by the time-averaged

naphthalene concentration at the surface. This is obtained from
numerical integration of the concentration determined at the measured

surface temperature. A correlation proposed by Ambrose et al. [13] is
used to determine naphthalene vapor pressure, from this, Pv,w is

evaluated using the ideal gas law and the naphthalene surface

temperature.
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EXPERIMENTAL APPARATUS AND PROCEDURE

Fig. 2 displays schematic view of the test section. The entire

construction is made of aluminum tooling plates. The shaded area in

the figure, representing a cavity-like grooved tip, is the mass

transfer active surface cast with a thin layer of naphthalene,

approximately 2 mm in thickness. The cavity width, W, is maintained

constant at 3.2 cm (1.25 inch) throughout the entire study. The

desired values of C/W and D/W can be obtained accordingly, by fixing a

pair of adjustable screws. A 1.6 cm width surface is extended both

upstream and downstream of the cavity, forming the upstream gap and

downstream gap, respectively. The cavity span normal to the streamwise

direction is

four times

possible thr
have shown

dimensional

modeled by

adjustable,

different or

measured at 15.3 cm (6.0 inch) which is approximately

of the streamwise width, W. Under this condition, although

ee-dimensional phenomena are expected, preliminary tests

that the mass transfer characteristics are very much two

across at least 80_ of the span. The moving shroud is

a flat, seamless, Neoprene belt driven by a speed-

3/4 HP. D.C. motor. The test assembly can be rotated in

ientation relative to the belt moving direction.

During a test run, the laboratory compressed air supply is first

introduced to a plenum adjacent to the test cavity, then flows over

the cavity, and subsequently discharges to the surrounding atmosphere.

The entire test assembly including plenum and cavity is placed above

and contacts the moving belt, with the cavity opening facing downward.

Between the test assembly and the

teflon pads mounted on the contacti

reduce dynamic friction and to pre

teflon plate is placed undernea

effectively eliminates belt vibrati

section. Preliminary tests at full

that this design is very effective.

moving belt, there are several

ng surface of the test assembly to

vent air leakage. An additional

th and against the belt which

on as it moves over the test

anticipated belt speeds indicate

One of the most challenging aspects of the subliming mass

transfer experiment is the surface profile measurement on the

naphthalene surface. Mass transfer at a certain location is inferred

from the change in naphthalene thickness at that location. In order to
obtain the distribution of local mass transfer coefficient in the

region of interest, the surface contour must be measured before and

after each test run. Therefore, successful execution of local

measurements in subliming mass transfer is critically dependent on

precise positioning and accurate thickness change readings. In

addition, to avoid errors caused by the extraneous naphthalene

sublimation and human fatigue during a lengthy measurement requires

rapid data acquisition. A computer-controlled, automated data

acquisition system has been designed and used to fulfill all of these

requirements. A block diagram giving a schematic view of the entire

system is shown in Fig. 3. It consists of a depth gauge along with a

signal conditioner, a digital multimeter, two-stepper-motor driven

positioners, a motor controller, and a Zenith 150 microcomputer (IBM-

PC compatible) as the measurement process controller. The Zenith

microcomputer is also used for data storage and reduction. Details of

the measurement system have been described in [14, 15].
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RESULTS AND DISCUSSION

Most of the mass transfer results in this study are presented in

form of Stanton number, St, as discussed in the previous section. For

all the test runs, the uncertainty in the local St is estimated to be

5%, and the repeatability is considerably better than this value.

Prior to the actual tests for grooved-tip geometries, mass transfer

from a flat surface in the absence of cavity has been measured, and

the results agree very well with those of heat transfer in the

developing region for turbulent pipe flow with a sharp-angle entrance

[16]. This validates the present experimental system and provides

confidence in data accuracy.

A sample of results describing the local Stanton number

distribution on the cavity floor and the surfaces of upstream and

downstream of the cavity is shown in Fig. 4. The figure consists of

four sub-figures, 4(a) to 4(d), representing Re = UC/v = 2.0 x 104 ,

C/W = 0.14, and D/W = 0.I, 0.5, 1.0, and 1.5, Uw/U = 0.0 and 0.46. It

is noted in Fig. 4 that very non-uniform St distributions exist for

all the cases tested. On the surface upstream of the cavity (i.e. the

upstream gap), St increases with streamwise location, reaches a local

maximum near the mid-point of the surface, and then decreases toward

downstream. The characteristic of this St distribution is virtually

identical to that of heat transfer near a channel entrance preceded by

a sudden contraction. Typical value of the maximum St is approximately

twice as that for the fully developed channel flow having the same

Reynolds number.

Mass transfer characteristics on the surface downstream of the

cavity (i.e. downstream gap) are similar to that of a newly developing

boundary layer with zero angle of incidence. In contrast to the

upstream gap, the highest St occurs near the leading edge of the

surface, and the St decreases along the streamwise direction. However,

;t is speculated that a second local maximum St may exist somewhere

downstream of the leading edge provided that the gap size is

sufficiently large; a vortex region is expected to exist in the

upstream portion of this surface. This second local maximum St has

been reported in the literature for cavity flow without shroud

presence [10].

Values of St on the cavity floor are in general smaller than that

on surfaces upstream and downstream of the cavity. In addition, as

shown in Fig. 4, the nature of the cavity-floor St distribution

depends strongly on the cavity geometry, namely the cavity aspect

ratio, D/W. For shallow cavities, say D/W = 0.i, the shear layer

separated from the upper corner of the cavity upstream wall should

have reattached the cavity floor. In the region near the reattachment

point, generally accompanied with higher turbulence mixing, mass
transfer coefficient reaches a local maximum. This effect is clearly

observed in Fig. 4(a). For D/W = 0.5, according to a flow

visualization study on unshrouded cavities [9], the entire cavity will

be largely filled with a recirculating vortex resulting in a

streamwise, monotonically increasing trend of mass transfer on the

cavity floor, as shown in Fig. 4(b). For even deeper cavities,
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D/W = 1.0 and 1.5, the values of cavity-floor St become smaller, and

peculiar mass transfer characteristics exist, with more than one local

maximum St being observed in Figs. 4(c) and (d). This is speculated to

be attributable to the additional and strong degree of secondary-flow

interactions near the cavity bottom.

For all the cases present in Fig. 4, the general trend of

influence of relative shroud movement on the mass transfer from a

grooved tip is found to be quite consistent. At each corresponding

streamwise location, the mass transfer St on the surfaces of

downstream gap and cavity floor are generally hlghe_ for Uw/U = 0.46

than that for stationary shroud situation (i.e. Uw/U = 0); while the

reversed effect is observed on the surface of upstream gap. This is

understandable that the shroud motion introduces more naphthalene-free

air into the mainstream in the downstream portion of the test section,

thus the bulk air flow in this region is less naphthalene-enriched
than that without shroud motion. This in turn enhances the mass

transfer. Opposite effect is expected for the upstream portion,

resulting in a lower mass transfer driving potential. However, the

difference in St affected by the different values of Uw/U is overall

insignificant and, for majority of the data, the differences are in

fact within the experimental uncertainty. The speculation raised in

Ref. [6] that the relative shroud motion has a very minor effect on

the flat blade-tip heat transfer may also be applied to the heat

transfer to a grooved tip, at least for the present study range.

Mass transfer measurements are also made on cavity side walls,

and Figs. 5 and 6 show typical results for the intermediate cases

D/W = 0.25 and 1.0. The mass transfer from the cavity upstream wall

(downstream-facing wall) is dominated by the vortex attached behind

the wall and has the same order of magnitude of St as that on the

upstream portion of cavity floor, which generally has low mass

transfer rates. On the other hand, the fundamental mode of mass

transfer mechanism for the cavity downstream wall (upstream-facing

wall) is the impingement of the separated shear layer on the wall, in

particular on the upper portion. As a result, the mass transfer

coefficient is generally high near the top of the downstream wall. The

influence of relative shroud movement on the mass transfer from the

two side walls is found to be insignificant, the same finding shown in

Fig. 4. However, the influence seems to be stronger for deeper cavity

(D/W = 1.0) than for the shallower one (D/W = 0.25), and, as shown in

Fig. 6, it affects oppositely on the mass transfer between upstream

and downstream walls.

Fig. 7 shows the area-averaged mass transfer coefficient and the

overall mass transfer rate for all the cases presented in Fig. 4. The

left scale in Fig. 7 represents the Stanton number averaged over the

entire mass transfer active region, St; while the right scale gives

the value of Mt/pv,w_ normalized by the corresponding value for the

case D/W = 1.0, where Mt is the time-averaged mass transfer rate over

the entire mass transfer surface. As expected, the shroud motion has

little influence on both results, with a less than 10% maximum

variation caused by the difference in shroud movement. According to

Fig. 7, St decreases with an increase in the value of D/W; however,
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the value of normalized overall mass transfer rate remains almost

constant for D/W _ 0.5 and then increases for higher D/W values. This

implies that, despite the lower mass transfer coefficient, the deeper

cavities experience higher overall mass transfer rate than the

shallower ones, due mainly to the additional mass transfer area

present in the cavity side walls. If the heat transfer with tip

leakage flow is of concern, it may be undesirable to groove a blade

tip having a cavity aspect ratio, D/W, higher than 0.5. This result

agrees favorably with the conclusion from Ref. [II] by Metzger and

Bunker.

Another important parameter affecting the tip heat transfer is

the size of gap clearance, namely C/W. Fig. 8 shows the typical

results for cavities with D/W = 1.0, Re = 2.0 x lO 4, and Uw/U = O. The

general trend is that the larger the value of C/W, the higher the mass
transfer coefficient. In addition to change in the magnitude of local

St, the general characteristics of St distribution over the surfaces

of upstream and downstream gap vary with different values of C/W. This

variation may be understood by consideration of flow pattern in the

gap, which, to a certain extent, is affected by the nature of sudden

contraction as the fluids flow into the gap. Moreover, according to a

recent study by Chyu et al. [17], the larger gap clearance permits the

separated shear layer to grow thicker inducing higher turbulence level

in the gap mainstream. The mass transfer on the downstream gap surface

as well as on the cavity downstream wall are thus influenced by the

characteristics of shear layer. In view of the results shown in

Fig. 8, a recirculating vortex may exist in the downstream gap for

C/W Z 0.2., as a local minimum of St observed in the mid-portion of

the surface.

Fig. 9 shows the Reynolds number effect on the tip mass transfer.

While fixing the D/W = 1.0 and C/W = 0.14, the Reynolds number,

defined as Re = UC/y, varies from 0.38 x 104 to 3.6 x lO 4 by

controlling the air flow from the laboratory compressor. Since the

size of clearance is physically the same in these cases, the only

variable in fact is the gap mean velocity. As shown in Fig. 9, within

the present test range, the local St generally decreases with an
increase of Re. However, the trend is attenuated and even reversed

when Re Z 3.6 x 104. This peculiar tendency can be explained at least

by consideration of the compressibility effect. For Re = 3.6 x 104 ,

Mach number in the gap is approximately equal to 0.4, and it may be

inappropriate to consider the flow incompressible, and the mass
transfer increases as the compressibility effect dominates.

The actual turbine blade involves curved surfaces, and at a

certain location on blade tip, the relative direction between the

leakage flow and the shroud movement may not be exactly opposite

(180"). Complex secondary flow possibly with helix motions is expected

in the tip groove under this condition. As a preliminary investigation

of this phenomena, an attempt has been made to study this effect on

tip leakage heat transfer by varying the relative orientation between

the moving belt and the mass transfer test assembly. The angle varies

from 180" to 112". Fig. i0 displays the contours of constant Stanton

number on the cavity floor with a 135" angle of mis-alignment,
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C/W = 0.14, D/W = l.O, Uw/U = 0.46 and Re = 2.0 x 104 To be noted _s

the fact that, except for the angle difference, the test condition and

geometry are identical to that of results shown in Fig. 4(c)o

Comparing these two cases, the local mass transfer characteristics

apparently are affected by the angle magnitude. However, the overall

values of average Stanton number and mass transfer rate ere virt,,a]]y

uninfluenced, as shown in Fig. ii.

Attention is now turned to the correlation between the area

averaged mass transfer and the affecting par_ameters as previously

discussed. Using the power regression fit, St is found to vary with

-0.24 power of D/W, and the power index becomes -0.28 if the area-

averaged St over the cavity floor is only of concern. The latter is in

good agreement with results from previous studies; -0.22 in Ref. [11]
and -0.27 in Ref. [9]. It should be noted that, in Ref. [9], only the

cavity floor was heated and the cavity side walls were kept adiabatic,

whereas the present mass transfer system is equivalent to the

situation with the entire cavity surface maintained at an isothermal

wall condition. As for the gap clearance dependency, St groups well

with C/W to a 0.32 power indicating that a greater influence on tip

heat transfer than does the cavity aspect ratio, D/W. The same

conclusion has also been found in Ref. [Ii]. The influence of Reynold___s

number on the entire tip mass (heat) transfer can be expressed as St

proportional to Re -°-36 In Ref. [9], for unshrouded cavities, the

Stanton number averaged over the cavity floor is found to vary as the

-0.5 power of Reynolds number. The difference may be attributed to the

difference in the nature of cavity geometry, the boundary condition

and the testing range of Reynolds number.

CONCLUDING REMARKS

The present study of heat transfer in the tip region of a rotor
blade simulator is now in its second-year stage. The naphthalene mass

transfer technique with the high-precision surface measurement system
has demonstrated itself as a viable method to study the local transfer

information in great detail. Parameters which influence the heat

transfer in a grooved tip region have been identified, with their

effects being investigated extensively. Further studies emphasizing

actual blade airfoil shape may be desirable.
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COOLANT PASSAGE HEAT TRANSFER WITH ROTATION*

T. J. Hajek
United Technologies Corporation

Pratt and Whitney

j. Wagner and B. V. Johnson
United Technologies Research Center

In current and advanced gas turbine engines, increased speeds, pressures and
temperatures are used to reduce specific fuel consumption and increase thrust/weight
ratios. Hence, the turbine airfoils are subjected to increased heat loads escalating
the cooling requirements to satisfy life goals. The efficient use of cooling air
requires that the details of local geometry and flow conditions be adequately mod-
eled to predict local heat loads and the corresponding heat transfer coefficients.

Improved turbine airfoil local temperature and hence, life predictions can be
realized by accurately accounting for the effects of rotation on internal cooling.
Although the effects of rotation which give rise to Coriolis and buoyancy forces can
be large, they are currently not adequately included in the heat transfer designs
of blades. Experimental data is particularly needed for the higher Rayleigh and
Reynolds number conditions that are characteristic of turbine airfoils cooling
passages. This data is crucial for development of design correlations and computer
codes as well as their verification. Accurate prediction of local heat transfer co-
efficients enables the designer to optimize cooling configurations to minimize both
metal temperature levels and thermal gradients. Consequently, blade life and engine
efficiency can be significantly improved.

OBJECTIVE

The objective of this 36-month experimental and analytical program is to develop
a heat transfer and pressure drop data base, computational fluid dynamic techniques
and correlations for multi-pass rotating coolant passages with and without flow
turbulators. The experimental effort is focused on the simulation of configurations
and conditions expected in the blades of advanced aircraft high pressure turbines.
With the use of this data base, the effects of Coriolis and buoyancy forces on the
coolant side flow can be included in the design of turbine blades.

EXPERIMENTAL MODEL

The coolant passage heat transfer model features a four-pass serpentine arrange-
ment designed to reflect the passages within a gas turbine blade. For the present
experiments, the model was fitted with skewed turbulators, as indicated in figure
I. Figure 2 shows a schematic diagram of the model with the instrumentation and wall
sections indicated. Heat transfer coefficients are obtained for each wall section
element. These wall elements, numbered 1 to 64, consist of a copper block backed
with a thin film electrical resistance type heater and instrumented with two thermo-
couples. The copper wall sections are 10.7 mm x 49.3 mm (0.42 in. x 1.94 in.). Each
section is thermally isolated from the adjoining section by a 1.5 mm (0.060 in.)
thick divider strip of low thermal conductivity G-II composite material. The
straight radial passages have a square cross section, 12.7 mm x 12.7 mm I0.5 in. x
0.5 in.).

*NASA Contract NASA-23691
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DATAREDUCTION

Data acquisition/analysis consists of three general categories: equipment cal_-
bration, model heat loss measurement, and heat transfer coefficient calculations.
The equipment calibration follows standard experimental procedures. Model heat loss
measurements precede each test. These measurements are executed with no coolant flow
and uniform wall temperature steady-state conditions, identical to the subsequent
test less the coolant flow. Heat transfer coefficients are then calculated for each
wall section element by applying the following procedure.

For each copper element the net energy convected to the fluid is calculated by
subtracting the electrical line losses and conducted heat losses from the total
energy supplied. Bulk fluid temperatures are then calculated based on an energy
balance for each flowpath section as follows:

q

Tb : net_ 4 walls + Tb.
out mCp in

where the model inlet bulk temperature is measured. Once bulk fluid temperatures are
determined, heat transfer coefficients are calculated from the equation:

q
net, wallh =

A (T w - Tb)

where Tb is the average of the inlet and exit bulk temperatures. Thus for each
test case, 64 heat transfer coefficients are calculated.

Table I shows the test conditions for which data were acquired with the skewed

rough wall model. A total of 30 tests has been conducted to isolate the effects on
heat transfer of rotation rate, flow rate, coolant-to-wall temperature variations,
radius length and passage angle.

RESULTS

All of the experiments listed in Table I were completed to date. Measurements
of both the passage heat transfer and the channel pressure drop were conducted. Due
to the large number of data points obtained, comprehensive discussion of all the
results is beyond the scope of this paper. Instead, the following paragraphs will
mainly focus on comparisons between the smooth and the skewed trip strip channel
data at specific operating conditions and physical locations within the model. This
will facilitate better understanding of the underlying physical principles. It
should also be noted that due to the complexity of the subject matter, many of the
explanations presented herein are hypotheses and will require further substantiation.

In order to fully understand the channel heat transfer behavior under the in-
fluence of rotation, it is imperative that key differences between the smooth and
the augmented channel be examined in stationary frame first. Figure 3 depicts a
comparison between the smooth and augmented models for the baseline condition of
Re = 25,000. In the first leg of the model, the smooth channel heat transfer
exhibits classical thermal development behavior (decreasing Nusselt number with
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distance), whereas the rough wall shows nearly constant augmentation (factor of 3)
throughout the first leg. This is consistent with other Pratt & Whitney aata.

Also quite different is the turn heat transfer. For the smooth wall case,
classical heat transfer increase (factor of 2) is present. In the augmentea channel
turn, the Nusselt number aecreases through the turns (note that it reaches values
below the smooth duct). This is followed by an immediate increase, just downstream,
of the turn. Subsequently, the second leg heat transfer decreases along the passage.
A similar pattern repeats for the second turn and the third leg. It is important to
note that the second and the third passages exhibit progressively decreasing average
Nusselt number. In fact, the third passage augmentation approaches levels expected
from normal trip strips. Even though good understanding of this phenomenon has not
been gained to date, it is clear that the first passage (with its well behaved
inlet) acts very much like a straight duct, whereas the subsequent passages are
strongly affected by the turn generated secondary flows. It is felt that this fact
will play an important role in understanding the rotating results. Consistent with
other results, the rough channel side wall (rib wall) heat transfer is augmented
somewhat by the presence of the trip strips, but in general behaves similarly to
the smooth duct rib walls.

Figure 4 shows comparison of heat transfer results for smooth wall and skewed
trip rough wall at baseline rotating flow conditions of Ro = U.24 and Re = 25,000.
As was the case with the smooth passage, the rough wall leading surface heat trans-
fer is significantly reduced (40-50% reduction) by the introduction of rotation.
Because the trailing side shows heat transfer augmentation of only 30%, the average
channel Nusselt number is reduced. While the rough model heat transfer in the first

passage is strongly affected by rotation, the subsequent legs and turns show very
little dependence. This fact is further supported by examining figure 5, where neat
transfer ratios are presented for several rotation rates. In this figure, the first
passage is again quite active, whereas the other channels exhibit very little varia-
tion with rotation. This finding further supports the hypothesis of turn generated

secondary flows dominating the subsequent passages.

The influence of buoyancy on rotating channel heat transfer is depicted in
figure 6. With the exception of the first leg, the leaaing (stablilized) wall shows
very weak dependence on temperature (density) variations. The trailing surface, on
the other hand, does show considerable dependence on _T. Better representation can
be found in figure 7. Leading and trailing surfaces are plotted for the last heating
element in the first leg. Note that the data at Ro = 0.0 do not coinciae. This is a
direct result of small manufacturing inconsistencies in the heating elements. The
density (temperature) ratio is shown with flag symbols. It can be clearly seen that
the trailing surface heat transfer is more sensitive to density variations than the
leading surface. When the trailing side data are examined closely, it can be seen
that the absolute heat transfer change due to temperature variations is approximate-
ly the same for both smooth and rough ducts. The rough wall leading surface, how-
ever, shows significantly smaller variation for a given _T change. This information
indicates that the buoyancy forces do not play as important a role in augmenting
heat transfer on "stabilized" surfaces for rough walls as they do for smooth walls.
This fact is further supported in figure 8, where the same data is plotted against
the Buoyancy Parameter. Both leading and trailing surfaces for smooth ducts as well
as trailing surface for rough ducts correlate well with the Buoyancy Parameter.
However, the leading surface data for the rough wall model do not collapse. Poten-
tially, this may indicate that in addition to the buoyancy forces, some other
process, as yet unexplained, is becoming important.
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It should also be noted in figure 8 that at high levels of the Buoyancy Para-
meter, the heat transfer ratios are approaching an asymptotic limit. In the case of
the smooth duct trailing surface, the limiting rough wall heat transfer level is
only 20% nigher.

In reality, the difference is only 10% if the rough wall convection area is
corrected for the trip strip surface area. The important observation to be made here
is that at low values of the Buoyancy Parameter, the rough wall has significant heat
transfer advantage over the smooth wall. At high values of the buoyancy parameter,
however, the trip strip advantage is significantly diminished.

WORK PLANNED

Detailed analysis and correlation of the skewed turbulator data will continue.

Currently the model is being modified to include normal turbulators on the
leading and the trailing surfaces of the straight radial passages. A thirty point
test matrix, similar to the one in Table I will be executed.
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TABLE I

TEST MATRIX FOR ROTATING HEAT TRANSFER EXPERIMENTS FOR SKEWED TURBULATORS

Test UTRC
Run No.

201 6.7
202 9.9

203 8.8
204 ]0.8

205

206

207

208

209

210

211

212
213

214
215

216
217
218
219
220
221
222
223
224

225
226
227
228
229

230

Dimensiona I Parameters Basic

Dimensionless Parameters

P _'_ _ AT H (X I_ Ro AT H Ap _"_H

(psl) (rpm) (lblsec) (F) (in) (deg) TIn d P V

I47.7 0 0.0]3 8] 25 0 25,337 0 0. I5
147.8 0 0.006 80 25 0 12,490 0 0.]5

149.5 0 0.025 80 25 0 50,715 0 0.15

145.0 0 0.024 80 25 0 75,348 0 0.15

15 BO 25 0 25,000
145 80 25 0 25,000
275 80 25 0 25,000

412 80 25 0 25,000
550 80 25 0 25,000
825 80 25 0 25,000

145 8O 25 0 12,500
550 80 25 0 50,000

825 80 25 0 75,000

275 160 25 0 25,000
550 160 25 0 50,000

145 160 25 0 25,000
412 120 25 0 25,0O0
412 40 25 0 25,000
412 160 25 0 25,000
550 40 25 0 25,0O0
550 120 25 0 25,000

550 160 25 0 25,000

825 40 25 0 25,0n0
825 120 25 0 25,000

80 25 45 25,000
80 25 45 25,000
80 25 45 25,000

160 25 45 25,000
80 25 45 5O,OOO

160 25 45 50,000

825
550
275

275
550
55O

0.006

O.06

0.]2

O.IB

O.24

0.35

O. 12
0.12
0.12

0.]2
O. 12

0.06
0.18
O. 18
0.18
0.24
0.24
O. 24

O. 36
O. 36

O. 34

0.24
0.12
0.12

0.12
0.12

Secondary Dimension-

less Parameters

GrlRe 2 Grx10 "8

0 0

0 0

0 0

0 0

0.00

O.Ol
0.05
0.12

0.22
0.45

0.09

O. 06
0.05

0.14
0.14

0.03
0.17
0.07
0.20
O. 72
0.30
O. 36

0.28
0.64

0.42
9.22
0.05

0.14
0.06
O. 14

0.00

0.13
0.46
1.06

1.96

4.22

0.14

I.98

4.20

0.87
3.49

0.21
]. 55
0.63
0.18
1.13
2.73

3.06
2.39
5.70

3.66
1.98
O. 46

O. 87
1.98
3.49

Comments

No Rotation

Vary Ro
Hold /_T, Re

Vary Re

Hold _T, Ro

Htah _T

Va_ _T, Ro

at Re-25,00O

Angle
Variation

_- 45°



Streamwise location of test sections identified by A to R.

All four test section surfaces for streamwise locations A through R are heated.

Leading test

section surfaces
Trailing test

section surfaces

Figure 1 Cross Sectional View of Coolant Passage Heat Transfer Model Assembly With
Skewed Trip Rough Walls
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TEST SECTION ELEMENT IDENTIFICATION

SURFACES 1-32 ARE ON SIDE WALLS PERPENDICULAR TO VIEW SHOWN

SURFACES 33-48 ARE ON ' + # LEADING PLANE
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Figure 2 Instrumentation Plan for Coolant Passage Heat Transfer Model

199



_?- 0.0 rpm m- 0.013 Ib/sec

P - 10 atm Re _ 25,000

Open symbols - smooth wall data

Solid symbols - skewed rough wall data
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Heat Transfer with Very High Free-Stream Turbulence and Streamwise Vortices *

Robert. J. Moffat and Paul Maciejewski

John K. Eaton and Wayne Pauley

Department of Mechanical Engineering, Stanford University

Results are presented for two experimental programs related to augmentation of

heat transfer by complex flow characteristics. In one program, high free stream

turbulence (up to 63_) has been shown to increase the Stanton number by more than a

factor of 5, compared with the normally expected value based on x-Reynolds number.

These experiments are being conducted in a free-jet facility, near the margins of the

jet. To a limited extent, the mean velocity, turbulence intensity, and integral

length scale can be separately varied. The results to date show that scale is a very

important factor in determining the augmentation. Detailed studies of the turbulence

structure are being carried out using an orthogonal triple hot-wire anemometer

equipped with a fourth wire for measuring temperature. The v' component of turbulence

appears to be distributed differently from u' or w'. In the second program, the

velocity distributions and boundary layer thicknesses associated with a pair of

counter-rotating, streamwise vortices have been measured. There is a region of
considerably thinned boundary layer between the two vortices when they are of

approximately the same strength. If one vortex is much stronger than the other, the

weaker vortex may be lifted off the surface and absorbed into the stronger.

Foreword

Most heat transfer research is conducted in low-turbulence tunnels, that is, with

less than 0.5_ turbulence, in flows especially refined to be spanwise uniform and
steady. These conditions produce a "low-limit" estimate of heat transfer for a given

mean flow and geometry. Free stream turbulence, or unsteadiness, or streamwise

vortices increase heat transfer.

Even a small amount of free stream turbulence will advance the transition

upstream, exposing more surface to turbulent heat transfer.

Free stream turbulence of 4 to 6_ or larger may increase heat transfer even in

fully turbulent regions [Blair, Ref. 1].

Streamwise vortices can thin the boundary layer, increasing heat transfer.

Most research studies of the turbulence effects use grids and let the turbulence

relax until nearly homogeneous and isotropic before heat transfer studies are made

[e.g. Blair, 1983].

* This work was performed under NASA NAG 3-522
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Gas turbines, on the other hand, run with turbulence up to 20-30_, which is

probably highly anisotropic and well laced with large coherent structures coming

downstream from the combustion chamber. Dils and Follansbee [Ref. 2] measured up to

16_ in the discharge of a laboratory scale combustor in a bench test. They reported

increases in heat transfer of over 50_ on the stagnation line of a cylinder in that

flow. Other recent experiences (Rohde, [Ref. 3]) suggest 20 to 30_ as a reasonable

value for the relative turbulence near a typical first turbine nozzle ring.

The flow through a gas turbine may not look much like the flow most researchers

have in mind when they think of "turbulence." It is not difficult to imagine,

superimposed on the "normal" turbulent fluctuation a whole family of flow disturbances

whose spatial and temporal characteristics are determined by the engine configuration

upstream of the point observation.

Among the phenomena which may be present (either intermittently or steadily) are:

(1) large scale, low frequency quasi-coherent structures,
(2) streamwise vortices,

(3) wakes from upstream vanes or blades,

(4) regions of high turbulent shear stress.

This paper describes recent results from two programs at Stanford, one concerning

the effects on heat transfer of very high free-stream turbulence and the second
concerning the effects of streamwise vortices.

The high turbulence has, so far, been created by placing the test plate in the

margin of a large diameter free jet. This exposes the plate to a flow in which the

local turbulence intensity can be as high as 702. Putting the plate at different

distances from the jet exit, and at different distances from the axis of the jet

allows a certain degree of independence in choosing the mean velocity, turbulence
intensity, and the integral length scale.

There is no assurance that this flow is like that which exists in a gas turbine,

but it need not be the same to provide clear evidence that chaotic, unsteady, and

highly Turbulent (with a capital T!) flows can result in heat transfer rates far

higher than predicted by the usual correlations. One objective of this program is to

demonstrate how high the "upper bound" of turbulent heat transfer can be pushed, at a

given x-Reynolds number based on mean velocity. This will not prove where the upper

bound is in a gas turbine, but will show at least where the lower limit of that upper

limit might be. A second objective is to identify the turbulence descriptors which
best relate to the increased heat transfer. This latter issue is critically

important, since we must know what aspect of turbulence best correlates with the

increase in heat transfer before we can specify the measurements which must be made.

It would be very helpful to have a "good" description of the flow field in an

engine, to guide the present experiments, but such data are not available. In fact,

the present work has already raised some troubling questions about the sufficiency of

the usual set of turbulence measures. The issue is, "What aspect of a turbulent flow

field best correlates with the increase in heat transfer?" There is no assurance that

measures of the mean velocity, turbulence intensity, and integral length scale will

suffice to identify the heat transfer aspects of a flow. In fact, the work reported

at HOST last year already contained evidence that f_xing these three parameters did

not fix the heat transfer. Until we know what aspect of the flow to measure, we

cannot even enter a sensible request for "Engine Data."

208



The second program reported here concerns streamwise vortices, and their effect
on heat transfer to turbulent boundary layers. This issue has attracted much

attention over the last several years, chiefly with regard to the end-wall heat

transfer. Several different vortical structures have been identified by flow

visualization, but characterization of their effect on heat transfer has been slow in

coming. This report describes some of the hydrodynamic features of a streamwise

vortex pair which might relate to their effect on heat transfer. These results are
described in the section entitled Phase II -- The Effects of Streamwise Vortices.

Phase I: The Effects of High Turbulence
During the past year, effort on this project has been concentrated on expanding

the range of variable covered in the free-jet facility, documenting the turbulence
structure in the free-stream and in the boundary layers, and designing an internal

flow facility to run in parallel with the free-jet facility. The results will be

presented in that order: first, the heat transfer measurements, then the turbulence

measurements, and lastly, the plans for the new facility.

Figure 1 is reproduced from the 1985 HOST report and shows a schematic of the

free-jet facility used in these studies. The test plate is 0.60 m wide and 2.5 m

long, divided into 8 test plates, each 0.3 m long. Each test plate is of 1 cm thick
Aluminum, equipped with 5 thermocouples in a cross-pattern, and a single-pemel
electric heater which covers the entire back face of the plate. The back face is

protected with 6 cm of Fiberglass insulation, to minimize heat loss.

The test plate was checked for repeatability and baseline values by installing it

in a closed-loop, low turbulence heat transfer tunnel. Data from the test plate

agreed with the accepted correlation for a constant wall temperature turbulent
boundary layer within +/- 4_. The test plate was then installed twice into the free

jet, at the same nominal position coordinates and flow conditions. The two sets of

results agreed within better than +/- 2_. By these three tests, the credibility of

the test plate as a heat transfer device was established, as well as the

reproducibility of the data in the free jet. These results were presented at the 1985

HOST meeting.

Figure 2 is also reproduced from the 1985 HOST report, and shows the effects of

free stream turbulence up to 48_. The envelope within which the Stanton number may
lie is bounded on the bottom by the usual low-turbulence correlations for laminar and

turbulent boundary layers. At 48_ turbulence, the Stanton number lies above the usual

correlation by about a factor of 4 and has a discernibly lower slope, in log

coordinates.

During the past year, we have extended the turbulence level of the tests from 48_

to 63_, with runs over a range of mean velocities from 0.5 to 5 m/sec, with integral

length scales between 4 cm and 17 cm. A total of 60 different combinations have now

been run.

Results of the high turbulence heat transfer taken to date are summarized in

Figure 3, in coordinates of St/Sto vs. Re X . Each line of symbols represents one run.
The points are measurements on the individual plates. St/Sto is the ratio of the
Stanton number with high turbulence to the Stanton number which would have existed at

the same mean-flow x-Reynolds number, but with no turbulence. On any one line of

data, or comparing any two lines having the same mean velocity, this ratio is a direct

measure of the heat transfer augmentation caused by the free-stream turbulence. It is

not so direct to compare two line of different mean velocity.
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The results shown cover the entire range of test conditions: various combinations

of free stream velocity (.47 to 2.89 m/s), Tu (22% to 63%) and integral length scale

(4-17 cm).

It is apparent, from Figure 3, that the effects of turbulence are not simple to

correlate: No simple proposal orders the data. For example, turbulence intensity

alone does not explain the comparison between Runs 1 and 3 (numbering down from the

top of the figure): those two runs have approximately the same turbulence intensity,

but the augmentaion is far higher for the low velocity than the high. Also, examining

Runs 2 and 3, we see two runs at about the same mean velocity (0.87 compared with

0.89), and about the same integral length scales (9.0 and 10.0 cm), but significantly

different turbulence intensities (48_ and 63%), yet the two flow conditions produce
almost exactly the same heat transfer augmentation: about 3/1. This same

"insensitivity" is displayed by Runs 4 and 5, which differ by 10% in their turbulence

intensities, but hardly at all in their heat transfer responses.

Several One-Parameter suggestions have appeared in the literature in the past 10
years, usually expressing the heat transfer augmentation in terms of turbulence

intensity. Based on the present results, it appears that these cannot succeed, at
least for the highly disturbed flow we are dealing with here. A broader treatment is
required.

A stepwise multiple linear regression program was used on the present data set, a

program which sought the most significant parameter from a list of candidates

provided, and extracted its effect before seeking the next most important parameter.

The coefficients were not forced, not was the order of parameter selection.

The program generated the following relationship:

54=
St _= 0.440 =

" -_I k 2, /

The correlation coeffient, R_- , for this relationahip was 0.95.

In this relationship _, is the integral length scale, y is the distance

from the test plate to the centerline of the jet (at the leading edge), and

x%is the distance from the leading edge of the test plate to the nozzle exit
plane.

Of the 420 data points recorded, none lie more than 18_ from that line, or more
than 20% from a simpler, perhaps more physically satifying form:

St = 0.405 =

T  xc,-
Such results are useful, but dangerous if misinterpreted or misapplied. Any

correlation arrived at by such a purely formal means must be viewed with caution, and
its limitations kept in mind. It is not a predictor of expected results for tests

outside the present operating envelope. It may not even be a good interpolator by

which to predict the results of new tests whose conditions lie within the envelope,

but which involve new combinations of the variables, combinations not included in the

data base. It is a correlation which describes the existing data, and nothing more:

420 data points taken from 60 runs, each with 7 data points, for the
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combinations of conditions we have run. We plan to investigate the robustness of

these correlations by testing their predictions against a set of runs not included in

the present correlation-generating base, but these tests have not yet been done. We

hope these correlations will lead us to something more physically based.

Note that turbulence intensity does not appear in either of these correlations.

If forced in, Tu appears with an exponent of +0.03: a very nearly insignificant

effect. If only Re and Tu are offered as candidates, but not _k , the resulting

correlation has a much lower value of R_

The high value of R _ suggests that all of the significant variables are

included, somehow, in this correlation. A constant value of the "position" parameter

(i - y/x ) must surely correspond to some invariant combination of the hydrodynamic

parameters of the free jet. We haven't found what those are, yet, but we are working

on identifying them.

In parallel with these heat transfer tests, detailed hydrodynamic studies have
been made of the turbulence distributions within the boundary layer, by hot-wire

anemometry. Previous hot-wire results reported from this project have come from a

single wire, parallel to the test surface. This simple system was used to

characterize the free stream turbulence, for the purpose of ordering the heat transfer

data sets. For the detailed studies within the boundary layer, a more sophisticated

system was introduced. An orthogonal triple-wire probe was used for the boundary

layer studies, with real-time analog processing of the linearized signals from the

three individual wires yielding real time, instantaneous U, V, and W velocity

components in laboratory coordinates. The system has been used (and reported) before

[Ref. 4]. It produces both time averaged and instantaneous values of U, V, W,

u', v', w', u'v', u'w', and v'w', and products of these terms. A fourth wire,

for temperature measurement, has been added under this project. The temperature

signal is used in a fourth channel of analog processing which is connected to the

velocity circuitry so as to compensate the instantaneous velocity signals for the

instantaneous temperature, as well as to display the temperature fluctuation, t'.

Thus, turbulence data can be taken in a heated boundary layer, without contamination

of the velocity signals from the temperature fluctuations. In addition, the turbulent

heat flux, v't' can be directly measured. We have not yet completed the qualification

tests of the direct measurement of v't', but the preliminary results were good..

Figures 4, 5, and 6 show typical distribution of the mean velocity, the

turbulence components (u' , v' , w' , and q ), and the turbulent transport of

momentum, -u'v'.

The mean velocity distribution is plotted against the y-position normalized on

the momentum thickness of the boundary layer. The present results are compared with a

seventh-power profile, for illustrative purposes. The present data are more sharply

"squared off" than the usual turbulent boundary layer--indicative of higher shear

stress (and heat transfer) at the wall. The distributions of q_, -_r_ and w--_ are

similar in shape, rising exponentially from zero to the free stream value. The -_

distribution is qualitatively different from the others.

The distributions of turbulent heat flux and shear stress are similar in shape

and both indicate the existence of a very thin layer near the wall, wherein the shear

strees and heat flux are constant. The quad-wire probe is too large to get data very

close to the wall: those studies will have to be done with more conventional probes.
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We are continuing the quad-wire study, and intend to document the structure of

these layers for each of the conditions which has a significantly different effect on

heat transfer and try to identify which aspect of turbulence is most closely

associated with high augmenatation of heat transfer.

For the next year, we will move a part of the effort into a closed loop tunnel,

generating high turbulence using a combustion chamber simulator. The objective, once

again, will be to first identify flows with very aggressive turbulence

characteristics, judged by their effect on heat transfer, and then to measure those
characteristics. The combustion chamber simulator will be a rectangular box with

replaceable sides, closed at the upstream end. It will be installed at the upstream

end of the test section, extending upstream into the present nozzle. All 5 faces (4

sides and the upstream end) will have replaceable panels. Holes of different
diameters will be used to adjust the larger scales of turbulence. Similar patterns of

holes will be used for all sizes. A bypass gate will allow the test section mean

velocity to be reduced, at constant turbulence kinetic energy. Prototype tests have

show significant enhancements of heat transfer near the leading edges of flat plates

in such a flow, but no detailed data have been taken.

From a comparison of the free jet and the internal flow results we hope to be

able to identify which aspects of turbulence are responsible for the large increases

in h and, perhaps, how to manage them by hardware design.

Phase II -- The Effects of Longitudinal Vortices

The objective of the second phase of the work is to examine the heat transfer

effects of longitudinal vortices embedded in otherwise two-dimensional turbulent

boundary layers. This simple case is meant to model the effects of embedded vortices

which can be introduced by fixed support struts, cooling air jets, and transverse or

longitudinal curvature. The experimentation couples spatially resolved heat transfer

measurements with detailed mean velocity and turbulence measurements.

Earlier work, under separate funding examined the effect of single vortices of

moderate strength [see E_beck and Eaton, refs. 3 and 4]. The single vortex was found
to produce substantial local augmentations of the heat transfer coefficient in the

downwash region of the vortex. Fluid dynamics measurements showed that the effect of

the vortex was simply to locally change the boundary layer thickness. Structural

changes in the inner part of the boundary layer were minimal.

The work is presently being extended to pairs of vortices which are a common

occurence in practical situations. The experiments are conducted in a
two-dimensional, boundary-layer wind tunnel with a freestream velocity of 16 m/s and

typical momentum-thickness Reynolds numbers of about 2000. The heat transfer

coefficient is measured on a constant-heat-flux surface using 160 thermocouples to

obtain good spatial resolution. All three mean velocity components and all components

of the Reynolds stress tensor are measured using miniature five-hole probes and

cross-wire anemometers. Counter-rotating vortex pairs are generated using pairs of

half- delta-wing vortex generators which protrude from the wall.

To date, we have completed the acquisition of mean velocity and skin friction

data for 12 different vortex configurations. Typical data are shown in Figure A. The

striking feature is the broad region of boundary layer thinning and augmented skin

friction between the two vortices. Clearly, this vortex pair would cause a very large

increase in the average skin friction and heat transfer coefficients. Cases for
which the common flow between the vortices is directed away from the wall have a
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different behavior; the vortices propel each other out of the boundary layer and the

effect on the heat transfer coefficient is minimal. One case involved a pair of

vortices with unequal strengths, a rough model for the vortices on a turbine endwall.

The vortices were swept towards each other by their image vortices, then the weaker

vortex began to lift above the stronger. After a short distance, the weaker vortex
lost its identity as it was absorbed into the stronger vortex.decreased on the other.

We are presently acquiring full planes of Reynolds stress data for two

representative cases. Following that, heat transfer data will be obtained for all

fifteen cases.
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FIGURE CAPTIONS
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Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Schematic of the free jet facility.

High turbulence effects on heat transfer

Summary of high turbulence heat transfer results.

Representative profile of the mean streamwise velocity, U.

Representative distributions of turbulence.

Representative distribution of turbulent shear stress.

Effects of a typical embedded vortex pair on mean velocity and skin friction.
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DEVELOPMENT OF LOW REYNOLDS NUMBER TWO EQUATION TURBULENCE
MODELS FOR FOR PREDICTING EXTERNAL HEAT TRANSFER ON TURBINE BLADES*

Suhas V. Patankar and Rodney C. Schmidt
Department of Mechanical Engineering, University of Minnesota

_TRODUCTION

A research effort has been underway to study the use of two equation low Reynolds number
tubulence models in predicting gas side heat transfer on turbine blades. The major objectives of this

ongoing work are basicly threefold.
(1) Study the predictive capabilities of two equation low Reynolds number turbulence models

under the conditions characteristic of modem gas turbine blades.

(2) Explore potential improvements to the models themselves as well as to the specification of
initial conditions

(3)Provide a comparison of the predictions of these models with the experimental data from
a broad range of recently available turbine cascade experiments.

This work is particularly concerned with the problems associated with predicting the boundary layer
transition from laminar to turbulent flow, as this may be the most serious deficiency of current

modeling techniques.
The work has proceeded in a number of phases or steps, and several of these of been completed.

The purpose of this report is to briefly discribe the results and conclusions of the lust two phases of
this work.

PHASE ONE

Evaluation of the transition prediction characteristics of current low Reynolds

number two equation models for flat plate zero pressure gradient boundary
layers under the influence of free stream turbulence.

Research has shown that the dominant factor influencing the location and length of transition is the
free stream turbulence intensity [1]. It has also been shown that the effects of free stream turbulence
on skin friction and heat transfer can be correlated reasonably well with two parameters, the free

stream turbulence intensity (Tue), and the free stream turbulence length scale (L e) [2,3]. These same

two parameters are directly related to the two quantities whose behavior is modeled in most two

equation turbulence models, ie. the turbulent kinetic energy (k), and the turbulence dissipation rate (e).
With the recent development of low Reynolds number versions of these models, it has seemed

reasonable to hope that with refinement, these models would be capable of predicting the influence of
free-stream turbulence on boundary layers in both the laminar and the turbulent regimes, and also on
transition.

The application of some of these models by a number of independant workers has verified that at
least qualitatively, these models do predict the major effects of free stream turbulence on transition
[5,6]. However, a detailed quantitative study has not been available to the knowledge of the authors.

The purpose of this phase of the research was to more carefully evaluate the transition prediction capa-

bilities of two relatively popular low Reynolds number versions of the stardard k-e two equation tur-
bulence model. The models chosen were those of Lain and Bremhorst [7], and Jones and Launder [8].

The computations were performed using the Patankar Spalding method [9] for boundary layer
flows. A variable grid using 88 nodes was used for all calculations and was found to be sufficiently

fine to produce essentially grid independant results.

* Work done under NASA Grant NAG-3-579
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Sensitivity_ to Initial Conditions

Figure 1 shows the results of varying the initial profiles of k and e on the location of transition

for a zero pressure gradient fiat plate flow where Tue=3% (note that the subscript e will always refer

to free stream conditions). The model used was the Lam-Bremhorst model. Run "A" follows the
initial profile recommendations of Rodi and Scheuerer [4], where

k=ke*(UAJe )n , n=2 (1)

e=al*k*OU/OY , e > (ke)l'5/L e , al(TU=3.% ) = .375 (2)

Run "B" was begun with essentially zero kinetic energy within the boundary layer. This was accom-

plished by setting n=8 and al=2.0. Both A and B were begun at Rex=2.27 x104, corresponding to a

momentum thickness Reynolds number (Re 0 ) of 100. Runs C and D correspond to A and B except

for the initial starting location, which was moved upstream to Rex=103. This figure illustrates the

following general characteristics of both low Reynolds number models.

(1) At a given starting location, a k=0 initial profile results in the onset of transition begining
at the farthest downstream location.

(2)The sensitivity to initial profiles decreases with decreasing initial Re x. Below some critical

value, the location of transition becomes essentially independant of initial Re x.

An important result to understand is that it is possible to specify profiles at Rex=2.27 x 104 such

that the curves A and B are reproduced. However, it isnot possible to specify any set of profiles at
Rex= 103 and yield transition as per C or D.

Sensitivi _tyto Initial Starting Location

To further explore the sensitivity of the prediction to the initial starting location, a set of

calculations were made with identical initial profiles, but at different initial Renolds numbers (Rex,i).

The k=0 initial profile explained above was used for all cases, as this always yielded the higher limit

on Rex,tran s . Figure 2 shows the results of these calculations. For the Lam Bremhorst model, the

location of transition is strongly dependant on Rex, i for Rex, i > 10 3, but basically independant for

Rex, i < 103. The Jones Launder model shows a somewhat lower critical value, with the location of

transition not significantly changing until Rex,i<102.

Sensitivi _tyto different free stream turbulent intensities

Figure 3 shows the results of calculations at free stream turbulence intensities ranging from 1.0 to

6 %. The calculations were all started at Rex=10 3 (where for the Lam Bremhorst model the initial

profiles of k and e were unimportant). A Tue= 1% calculation for the Lam Bremhorst model is not

shown because it was found that transition was not predicted by this model for Tu= 1%. This agrees
with the experience of Rodi and Scheuerer [5].

As can be seen, the qualitative characteristics of the variation of Cf during transition are predicted

reasonably well. Also, the onset of transition moves progressively upstream with increasing Tu e as it

should. However, significant differences between the predictions of the two models occur at higher

220



Tue. In Figure 4 the momentum thickness Reynolds number at the start (Re0s) and the end (Re0E) of

transition are plotted and compared with the correlation of Abu-Ghannam and Shaw [ 10]. Two major
quantitative problems are apparent in this figure. First, the onset of transition is generally predicted

too early for both models.This is especially true at higher Tu e. Second, the predicted length of

transition is much too short.

 umma 

Tests have been made of the transition prediction characteristics of two low Reynolds number two

equation turbulence models. The major items of interest learned include the following;

(1) Both models tested showed, as expected, the ability to correctly model the basic qualitative
aspects of transition, ie. the continuous transition from laminar to turbulent flow, the onset

of which moves upstream with increaseing Tu e.

(2)The onset of transition is moderately sensitive to the initial profiles specified for k and e.

This sensitivity decreases with decreasing Rex, i.

(3)For any given Rex, i, there is a limit to how far downstream the onset of transition can be

predicted. This limit is reached by specifying the initial profile of k--0.

(4)The onset of transition is very sensitive to the location at which the calculations are started.

This sensitivity decreases with decreasing Rex, i.

(5)For calculations started at low Rex, i (where the sensitivity to the initial profiles for k and e

becomes small), the onset of transition occurs at unrealistically early locations for both
models tested.

(6) Both models predict transition lengths significantly shorter than experiment.

(7)The Lain Bremhorst model does not predict transition for free stream turbulence intensities
of about 1.1% and lower.

(8) Because of the above deficiencies, the transition predictions of both models compare rather

tx_ody with the correlation of Abu-Ghannam and Shaw.

PHASE TWO

Modifications to improve the transition prediction characteristics of the l_am Bremhorst
low Reynolds number turbulence model.

A fairly ideal transition model for boundary layer flows would be one which, given any
physically realistic velocity, pressure, free stream turbulence and length scale distribution with x, and

the profiles for U, k, and e at some given x i, would consistantly predict the correct location and length

of transition. The agreement with experiment should be at least as good as the correlations currently
available relating the effects of these parameters on transition. Furthermore, the results should be

invariant with the initial starting location (xi), as long as the profiles for k and e were specified

correctly.
That the two models tested do not adequately approach this ideal is quite obvious from the results

presented earlier. However, there is another difficulty with striving to achieve this ideal. That problem

centers around the lack of experimantal data concerning the nature of the "correct" profiles for k and e

at any point prior to transition. Although our models require this as input, insufficient knowledge is
currently known about the values of these turbulent quantities within the quasi-laminar region just
prior to the onset of transition. Thus previous researchers have had to rely on add-hoc methods with

221



little more than the known boundary conditions and intuition to guide them [ 5, 6].

In searching for ways to improve on the current models, we must be content (for the present)
with "reasonable" profiles in this region, and try to minimize the sensitivity of the predictions to small
variations in them.

The Lam Bremhorst model was chosen as the model to begin work with. This was done for
basicly three reasons. First, the favorable results of the study by Patel et al [11]. Second, the
previous use of this model by Rodi and Scheuerer in working on this same problem. And third, the

simpler form of the source terms present in the k and e equations, a result of the form of the
dissipation rate variable used in this model.

Stabili _tyConsideratigns

The physical process by which an initially laminar boundary layer undergoes transition to a fully
turbulent state is a very complex problem, but is unseparably tied to stability considerations.
Fundamental to the process is the response of the flow to the introduction of small disturbances, from

whatever source. Under some conditions, a disturbance will decay, it's small energy being absorbed
into the mean flow. Under other conditions, a disturbance will be amplified, and energy will be
extracted from the mean flow to feed this growth. It is only under these "unstable" conditions that the
onset of transition can occur.

Linear stability theory gives some insight into the conditions underwhich a boundary layer
becomes unstable. Solutions to the well known Orr-Sommerfield equation for a Blasius velocity

profile yield a critical Reynolds number based on momentum thickness, Re0,c, below which

inf'mitesimal disturbances will not be amplyfied (Commonly quoted as 163 due to an approximate
solution, more accurate solutions have shown it to be equal to 201).

Experiments have shown that under the infuence of high free stream turbulence, transition can

begin to occur at Re 0 even less than this stability limit [10]. This is due the nonlinear behavior which

the high Tu e introduces. However, there does appear to be a lower limit, as the data seems to bottom

out at about Re0=160. Consequently, Abu-Ghannan and Shaw have proposed Re0= 163 as a lower

limit below which transition will not occur even at high turbulence intensities.
Stability considerations are not a part of either of the low Reynolds number turbulence models that

we have looked at. The k and e equations are simple advection diffusion equations with a particular

set of nonlinear source terms. From this context, it is not particulaly surprising that the deficiencies
previously discribed exist.

Method of Rodi and Scheuerer

The most helpful previous work in this area that this author is aware of is the recent work

presented by Rodi and Scvheuerer [5,6]. They apparently recognized many of the problems
previously discussed and recomended a particular procedure to deal with it. They chose to begin all

calculations at a momentum thickness Reynolds number of Re0=100. This in essence is their answer

to the stability problem discussed earlier. They then proposed particular forms for the k and e profiles

(see eq. 1,2) which seemed reasonable, and which gave them a simple constant (a]) with which to

tune their results (a] was correlated with Tue).

Figure 5 shows the results of following this procedure for a range of Tu e of 1.5 to 6 %. These

conditions are identical to those used for the runs presented in Figure 3, and the results show
improvement as compared to the previous Lam-Bremhorst model calculations. However, the results
are still relatively unsatisfactory when compared to the correlation of Abu-Ghannan and Shaw.
Although some improvement has been made with respect to the onset of transition, the short length of
transition is still a problem. Furthermore, since the model itself has not been changed, we are still left
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with the undesirable situation where, if we needed to start our calculations just a little farther

upstream, we would be unable to find any profiles for k and e which would yield similar results.

The mechanism bv which the model simulates Iransition

Before attempting to consider ways to improve the transition prediction characteristics of the
model, it is important to consider carefully how the process occurs in the model as it stands.

Figure 6 shows the typical development of the turbulent kinetic energy profiles as the model
proceeds from a laminar to a turbulent state. Turbulent kinetic energy from the free stream initially

begins to diffuse into the boundary layer. As this continues, the production term, lat(3u/0y)2, starts to

become significant. This in turn increases the local value of k, and thus I.tt. Thus process feeds on

itself, causing the rapid increase in k shown until the paramaters achieve a relatively stable state due to
the low Reynolds number functions and the wall boundary conditions.

The key term in this entire process appears to be the production term in the turbulent kinetic energy
equation. This is the term which in the model, simulates the amplification of free stream disturbances
and the resulting eventual transition to a turbulent state.

Proposed modification to the production term

A variety of different modifications to the model were explored and compared to try and find a
method which would satisfactorily alleviate the problems previously identified. These will not be
discussed individually. Only the method found to be the most satisfactory (at this point) will be
discribed.

The method developed focuses on two ideas. First, that some means of incorporating stability
considerations into the calculational procedure must be provided. Second, that the process by which
the model simulates transition, once started, must proceed at a finite rate and in accord with

experiment. It will be referred to as the "PTM3" modification ( an acronym for Production Term
Modification 3).

The modification is based on the following hypothesis.

(1)Since the production term is the term in the model which simulates the amplification of

purtibations, below some critical momentum thickness Reynolds number (Re0,c), the

production term in the k equation should be insignificant.

(2)The rate at which Pk can change is assumed to have some finite limit. The form of that

limiting growth rate, 0Pk/Ot, is assumed to be a simple linear function of Pk, as per

equation 3 below, and as shown in Figure 7.

[OPk/Ot]max = A*P k + B (3)

Guided by linear stability analysis and the results of experiments at a variety of free stream

turbulent intensities, the value of Re0, c was set at 125, and was assumed constant. Although

admittedly somewhat arbitary, it is based on the fact that no experiments known to this author have

indicated the onset on transition occuring for Re 0 lower than about 130-140. Thus, in the model, for

Re0< 125, the production term in the k equation (the e equation remains unchanged) was set equal to

zero.

The values of A and B are assumed to be functions of the free stream turbulence intensity, and

were found by optimizing the results of numerous numerical experiments to the correlations of Abu-
Ghannam and Shaw. Figure 8 illustrates the dependence of A and B on Tu e found from this work.
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It should be noted that the form of this modification is such that the fully turbulent predictions of
the unmodified Lam-Bremhorst model are not affected, becoming completely transparent once
transition has occured.

Results of the Proposed Modification

In Figure 9, the sensitivity of the model to initial starting location is shown. Once again, a series

of calculations at Tue=3% were made at different initial locations, just as was done and presented in

Figure 2. As can be seen, the sensitivity is greatly reduced, with all calculations started at Rex, i less

than 104 being virtually identical. Variations due to initial starting profiles for k and e were also

negligible for runs initiated below this limit.
In Figure 4 the predicted momentum thickness Reynolds numbers at the start and end of transition

for the trl'M3 calculations, the correlation of Abu-Ghannam and Shaw, and the previous unmodified
calculations presented earlier.

In Figure 10, the behavior of the predicted variation of Cf with Reynolds number is shown for

free stream turbulence intensities of from 1.5 to 8 %. The improvement is excellent as compared to
figures 3 and 5.

In Figure 1 1 the heat transfer results for calculations using the PTM3 form of the Lam-Bremhorst
model are compared with an experiment of Wang,Simon and Buddhavarru. Also shown is a calcu-
lation by Park and Simon ( paper submitted to 2nd ASME/JSME Thermal Engineering Conference,
Mar. 1987) using standard mixing length type transition modeling as per Abu- Ghannam & Shaw
[10] and Dhawan & Narasimha [ 12]. The agreement is excellent, and an improved simulation of the
transition path as compared to mixing length type models is indicated.

In Figure 12, the heat transfer data from three experiments of Blair [3] are compared with the
calculations. Excellent agreement is found except for the grid 2 case, where the calculations predict
transition somewhat upstream of the experiments.

Although the difference between the calculation and the experiment for grid 2 is not greater than
the scatter indicated in the original correlation by Abu-Ghannam and Shaw, it was nevertheless
disappointing. A plausible explaination for this error relates to the difference between the "total" free
stream turbulence intensity, and the three componants from which it is found, ie. u', v', w'. Blair's

experiments report the variation with x of both the total value of Tu e, as well as each of these

components. For this experiment, the u' component is about 1/2 % lower than the average of them all.
Since many of the results reported in the literature report only u', isotropic conditions must be

assumed in order to obtain a value for k e. Thus it may be that the model is slightly biased toward u'.

This would naturally manifest itself most clearly in the medium Tu range for the following reasons.

First, the assumption of isotropic turbulence generally improves significantly with decreasing
turbulence intensities. And second, the sensitivity of the location of transition to the magnitude of Tu e

decreases very strongly as Tu becomes higher. Thus, at moderate levels of Tu e, we would expect the

most sensitivity to a potential bias of this sort. Although just conjecture at this point, it was conf'u'rned
that when the calculations were repeated by assumming a free stream turbulence based on u' only, the
results were in much closer agreement. This is also shown in Figure 12.

Conclusions

It has been found that the proposed modification, as applied to the calculation of transition on zero
pressure gradient boundary layers under the influence freestream turbulence, has the following
improved characteristics.

(1) The model is insensitive to variations in starting location for Rex, i < 104 .

(2) The model is insensitive to any reasonable specification of the initial profiles for k and e

for starting locations below Rex, i < 104.
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(3) For free stream turbulence intensities of from 1.3 to 8 % the model predicts transition
starting and ending at momentum thickness Reynolds numbers in accordance with the
correlation of Abu-Ghannam and Shaw.

(4) The path by which transition occurs, as manifest in the variation in skin friction or surface
heat transfer, is in closer agreement with experiment than standard mixing length type transition
models.

It was also found that,
(5) The modifications become completely transparent after transition occurs, reverting to the
standard Lam-Bremhorst model.
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_IRBINE STATOR FLOW FIELD SIMULATIONS*

R.C. Buggeln, W.R. Briley, S.J. Shamroth and H. McDonald

Scientific Research Associates, Inc.

INTRODUCTION

The increased capability and accessibility of modern computers, coupled with

increasingly sophisticated and accurate numerical and physical modeling, has led to

a marked impact of numerical simulations upon current turbine design and research

problems. The turbine section represents a considerable challenge as it contains

significant regions of complex three-dimensional flow, including both aerodynamic

and heat transfer phenomena. In particular, the turbine flow field contains several

features which make its analysis a formidable problem. These include complex

geometry, multiple length scales, three-dimensional effects, possible strong

secondary flows, possible flow separation at off-design operation, possible

transonic effects and possibly important unsteady effects.

As a result of the particularly difficult nature of the turbine cascade flow

field, not nearly as much effort has been focused upon Navier-Stokes turbine

simulations as upon many simpler problems. Much of the work performed to date has

focused upon two-dimensional simulations. Although these can yield valuable

information and insight, the actual problem is a three-dimensional one, and a

three-dimensional approach is required to capture many of the important flow field

properties.

The focus of the present effort is development of an efficient and accurate

three-dimensional Navier-Stokes calculation procedure for application to the turbine

stator and rotor problems. In particular, an effective procedure is sought which

(i) adequately represents the flow physics, (ii) allows for sufficient resolution in

regions of small length scale, and (iii) has sufficiently good convergence

properties so as to allow use on a regular basis.

APPROACH AND BACKGROUND

The present approach solves the ensemble-averaged Navier-Stokes equations via

the Linearized Block Implicit (LBI) technique of Briley and McDonald (Ref. I).

Boundary conditions for subsonic inflow and outflow (the usual case) set upstream

stagnation pressure, upstream stagnation temperature, upstream flow angle, and

downstream static pressure. Additional conditions used are density derivative on

the inflow (upstream boundary), and velocity and temperature second derivatives on

the downstream boundary. On the cascade blade no-slip conditions and a zero

pressure gradient condition are applied along with either a specified temperature or

a specified heat transfer rate. In general, the first grid point off the wall is

taken so as to olace a point in the viscous sublayer. The governing equations are

written in general tensor form and solved in a body-fitted coordinate system.

Details of the governing equations, numerical techniques, grid construction,

turbulence model, etc. are given in Refs. 2-4.

* Work performed under NASA Contract NAS3-24358.
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Using this approach has allowed simulation of a variety of flow fields. In

particular, Refs. 3 and 4 describe work performed under a previous HOST contract

showing favorable comparisons with experimental data for heat transfer and surface

pressure distribution. More recent and yet unpublished work performed under NASC

sponsorship shows favorable comparisons for surface pressure distribution, skin

friction coefficient and velocity profiles, both on the blades and in the wake.

References 3 and 4 also show demonstration calculations for a three-dlmensional case

formed by placing the C3X geometry between parallel endwalls. Finally, preliminary

convergence studies for a Turner turbine cascade were presented by the present

authors at the 1985 HOST meeting.

More recent convergence studies for the C3X cascade are presented in Figs. 1
and 2. Convergence history results for a two-dimensional laminar calculation are

given in Fig. I. The residual is defined as the imbalance of all steady terms and

is normalized by the maximum residual in the field at the first time step. As can

be seen, the residual drops five orders of magnitude in 150 time steps. It is also

of interest to note that doubling the number of grid points did not significantly

effect the convergence rate. The convergence rate for the three-dimensional case,

is shown in Fig. 2. Again, rapid convergence is obtained; the solution was not

continued to assess if the residual would continue to drop.

PRESENT EFFORTS

The focus of the present effort is demonstration of a two-equation turbulence

model and demonstration of a three-dimensional turbulent case. In regard to the

turbulence model, the code contains both a mixing length model and a k-e model, as
described in Ref. 4. The C3X turbine cascade was chosen as a demonstration case for

this capability. The calculation was run for a case having an inflow Mach number of

0.16, a Reynolds number of 3.4x 10 5 and an inflow incidence of 0 °. The calculation

was initiated as a mixing length calculation and then continued with the two-

equation model. Results showing pressure contours and velocity vector field are
given in Figs. 3 and 4.

In addition to the turbulence energy calculation, present efforts are focusing

upon three-dimensional turbulent calculations, in both stator and rotor configura-

tions. The current problem being pursued is that of the C3X casade between parallel
endwalls. A calculation is being made for the same flow conditions as in the

two-dimensional case, using both mixing length and turbulence energy formulations.
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TURBINE AIRFOIL FILM COOLING*

Larry D. Hylton
Allison Gas Turbine Division

General Motors Corporation

INTRODUCTION

Emphasis is continuing to be placed on developing more accurate analytical

models for predicting turbine airfoil external heat transfer rates. Performance

goals of new engines require highly refined, accurate design tools to meet dur-

ability requirements. In order to obtain improvements in analytical capabilities,

programs are required which focus on enhancing analytical techniques through

verification of new models by comparison with relevant experimental data. The

objectives of the current program are to develop an analytical approach, based on

boundary layer theory, for predicting the effects of airfoil film cooling on down-

stream heat transfer rates and to verify the resulting analytical method by

comparison of predictions with hot cascade data obtained under this program.

BACKGROUND

The overall approach to attaining the stated objective has involved a series

of three programs. The initial program, performed under Contract NAS3-22761,

assessed the capability of available modeling techniques to predict non-film

cooled airfoil surface heat transfer distributions, acquired experimental data

as needed for model verification, and provided verified improvements in the

analytical models. This effort resulted in a baseline predictive capability and

was reported in CR 168015 (ref. I) published in May 1983.

The problem of heat transfer predictions with film cooling was broken into

sequential efforts with the effect of leading edge showerhead film cooling being

investigated first, followed by a program to study the effects of the addition of

discrete site suction and pressure surface injection. The effort on showerhead

film cooling was performed under Contract NAS3-23695 and was reported in CR 174827

(ref.2) published in July 1985. As part of that program, a five-row, simulated

common plenum showerhead geometry was tested to determine differences between film

and non-film cooled heat transfer coefficient distributions downstream of a leading

edge, multiple hole film cooling array. Building on non-film cooling modeling

improvements incorporated in a modified version of the STAN5 boundary layer code

developed under Contract NAS3-22761, a program was developed to analytically

model and predict differences resulting from leading edge mass injection.

The current program, being performed under Contract NAS3-24619, is intended

to extend the analytical code development to include discrete site pressure and

suction surface injection, with and without leading edge blowing, and to obtain

relevant hot cascade data to verify the model improvements.

*This work is being performed under Contract NAS 3-24619
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PROGRESS

Because of the long lead times associated with hardware design and fabrication,

initial efforts on the program have been aimed at the experimental phase. The

analytical efforts under the program are just beginning with the design mode analysis
phase having started in August. This phase is intended to demonstrate the use of

the base boundary layer method in a film-cooled turbine airfoil design system

environment. This initial study is addressing details involved with method set-up

procedures (e.g. defining initial and boundary conditions) and the qualitative

behavior of the film cooling models for a relevant film-cooled airfoil design.

The experimental phase of the program will be an extension of the previous

contract work. The hot cascade tests will utilize the same facility, cascade and

experimental techniques used in the previous contract, with the instrumented air-

foil in the cascade replaced with one containing suction surface and pressure

surface film cooling arrays in addition to a leading edge showerhead film cooling

array. Design of the film cooling arrays for the new airfoil has been completed

and the fabrication and instrumentation of the airfoil is nearly complete.

The airfoil cooling design incorporates three separate film cooling supply

plenums. One plenum will supply an array of leading edge showerhead film cooling
holes. The geometry of this film cooling hole array will be identical to that

utilized in Contract NAS3-23695. Two additional coolant supply plenums will be

incorporated into the vane; one to supply an array of holes on the suction surface

and the other to supply an array of holes on the pressure surface of the airfoil.

The three separate plenums will allow independent control of the flow to each

region of the airfoil.

The suction surface array will contain two staggered rows of holes centered

at approximately 25.2% of the suction surface length from the leading edge. Based

on the heat transfer results of the previous contract (NAS3-23695), this location

will place the array midway between the points of boundary layer transition origin

for the highest and lowest Reynolds number (Re) cases studied. This will result in

the ability to move the boundary layer transition origin point across the array as

the cascade operating conditions are changed. It is likely that the film cooling

holes will act as trips, resulting in earlier transition for the low Reynolds number
case.

In Figure i, the two vertical lines between twenty and forty percent surface
distance on the suction surface represent the location of the two rows of film

cooling holes. This figure illustrates the position of the holes relative to the

heat transfer coefficient distributionand clearly shows the suction surface holes

located midway between the boundary layer transition origin points for the highest
and lowest Reynolds number cases.

The location of the two rows of holes on the pressure surface are indicated by

the two vertical lines on the pressure side in Figure i. This array will be cen-

tered at 22.5% of the pressure surface length from the leading edge. As can be

seen from Figure i, this position is centered in the area of minimum heat transfer,

at the point where the heal transfer begins to increase as you progress toward the

trailing edge.

Details of the geometry for the film cooling arrays are summarized in Table i.

All hole diameters will be the same and will be identical to the showerhead hole

diameters in the previous contract. The geQmetry of the showerhead array will be
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identical to that tested in the previous contract. Both the suction and pressure

surface arrays will consist of two staggered rows with row spacing-to-diameter

ratios of 4.0. The hole spacing-to-diameter ratio of 3.0 will be the same on both

the pressure and suction surfaces. The injection angle in the leading edge will be

the same as in the previous contract where the holes were aligned normal to the

surface in the chordwise direction and at a 45° angle in the spanwise direction.

The suction surface holes will be inClined at 35° to the surface in the chordwise

direction while the pressure surface holes will be at 20° in the chordwise direction.

Both arrays will be normal to the surface in the spanwise direction. These injec-

tion angles and the location of the film cooling arrays on the airfoil qre illus-

trated in Figure 2.

Also shown in Figure 2 is the thermal barrier cutout region. This cut thermally

isolates the film cooling supply plenums from the regions of the airfoil where heat

transfer measurements are made, similar to the technique in the previous contract.

The retaining bar sho_m in Figure 2 ensures that the airfoil profile is properly

maintained after the thermal barrier cut is made.

PROGRAM PLANS

Fabrication and instrumentation of the film cooled airfoil should be completed

late this calendar year. Cascade testing is currently planned to begin in late

November and will extend through June 1987. Work on the analytical effort will

include prediction of cascade results during the design mode analytical phase which

is currently underway. While the cascade testing program is being performed, the

analytical effort will focus on a methods characterization study which will deter-

mine the qualitative/quantitative capabilities of the proposed analytical method by

comparing analytical predictions with experimental results from the cascade tests.

Following completion of this effort, the analytical task will enter the method

refinement/verification phase. This will address modeling deficiencies revealed

in the first two phases of the analytical program and will develop an improved

analytical code that will be verified by comparison with the experimental data

obtained during the course of the contract.
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TABLE I. GEOMETRY OF FILM COOLING ARRAYS

LEADING EDGE SUCTION SURFACE PRESSURE SURFACE

HOLE DIAMETER (IN.) 0.039 0.039 0.039

(CM.) 0. i00 0. I00 0. i00

HOLE SPACING/DIAMETER
7.5 3.0 3.0

ROW SPACING/DIAMETER 4.0 4.0 4.0

HOLE ANGLE

STAGGERED ROWS

45 °

(Spanwise)

35 °

(Chordwise)

20 °

(Chordwise)

Yes Yes Yes

LOCATION OF CENTER OF ARRAY

(% SURFACE DISTANCE)

25.2 22.5
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CONSTITUTIVE MODELING FOR ISOTROPIC MATERIALS*

Ulric S. Lindholm and Kwai S. Chan

Southwest Research Institute

INTRODUCTION

The objective of the present program is to evaluate and further develop existing
constitutive models for use in finite-element structural analysis of turbine engine

hot section components. The class of constitutive equation studied is considered
"unified" in that all inelastic deformation including plasticity, creep, and stress

relaxation are treated in a single term rather than a classical separation of plas-

ticity (time independent) and creep (time dependent) behavior. The unified theories

employed also do not utilize the classical yield surface or plastic potential

concept. The models are constructed from an appropriate flow law, a scalar kinetic
relation between strain rate, temperature and stress, and evolutionary equations

for internal variables describing strain or work hardening, both isotropic and

directional (kinematic). This and other recent studies have shown that the unified

approach is particularly suited for determining the cyclic behavior of superalloy

type blade and vane materials and is entirely compatible with three-dimensional
inelastic finite-element formulations.

In the first two years of the program, the unified constitutive models of
Walker (ref. I) and of Bodner and Partom (ref. 2) were demonstrated to yield good
correlation for a nickel-base alloy (PWA designation Bl9OO+Hf) for temperatures,
strain rates, and strain range characteristic of cooled turbine vanes in advanced
gas turbine engines. Experimental correlations were made with testing under uniaxial
and biaxial tensile, creep, relaxation, cyclic, and TMF loading histories. Both
models were incorporated into the _RC finite-element computer code. The code
was then utilized to predict the high-temperature cyclic response of a notched-round
tensile bar.

In this, the third year of the program, we have examined the behavior of a
second nickel-base alloy, MAR-M247, and compared it with the Bodner-Partom model,
further examined procedures for determining the material-specific constants in
the models, and exercised the MARC code for a turbine blade under simulated flight
spectrum loading. The third year results will be summarized in the following sec-
tions. Collaborators on this program have been staff of Pratt and Whitney Aircraft
and Drs. Walker and Bodner.

TEST PROCEDURES AND APPLICATION TO MAR-M247 AND B190O+Hf

The details of both Bodner-Partom and Walker models and experimental facilities
and test procedures are fully described in the Second Annual Status Report under
this project (NASA CR-174980). Therefore, we will summarize only current results
herein.

*Work done under NASA Contract NAS3-23925.
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Uniaxial monotonic hardeninq. A major concern with the unified or any other
comprehensive constitutive model is the determination of the material constants

and the number of test conditions required in the process. Our previous work,

to our surprise, had indicated that all constants could be derived from monotonic

tensile tests alone conducted over the appropriate temperature and strain-rate

ranges. It is usually assumed that cyclic data are required to separate the direc-

tional or kinematic hardening terms. However, it should be realized that hardening

under any loading history results from both isotropic and directional components
which may be separated if a model is available.

The monotonic tensile curves for MAR-M247 at several temperatures are given

in Figure la with the Bodner-Partom model correlation below in Figure lb. The
hardening constants for the model correlation are determined from the construction

given in Figure 2. Here the work-hardening rate, y = do/dWp = d_/od_P, is plotted
as a function of applied stress by differentiating the stress-plastic strain curve.

A common assumption, used in the Bodner-Partom model, is that both isotropic and
directional hardening progresses from an initial or current state to a satauration

value (do/dWp = O) with large strain at a hardening rate determined by the parameter
m. Such an evolutionary equation for hardening is

: m(h s - h)Wp

where h is the current state, hs is the saturation value, and m is the rate

parameter. One can show from the construction in Figure 2 that mI is the rate

of isotropic hardening and that m2 is the rate of directional hardening. Further,

the saturation values, hs, for both can be obtained from the stress intercept at
y = O. Directional hardening saturates first and dominates at small strain, while

the isotropic hardening dominates at large strains.

Figures 2b and 2c demonstrate similar hardening behavior for two other high-
temperature alloys, Bl9OO+hf and Hastelloy X.

Cyclic response prediction. The cyclic stress-strain curve predicted from

the Bodner-Partom model and the monotonic tensile test data are given in Figure
3b along with the experimental curves in Figure 3a. Extensive similar correlations

for Bl9OO+Hf are given in NASA CR-174980 for cycles with varying strain range,
R-ratio, hold-times, and temperature (TMF).

Biaxial response. Extensive biaxial tests have been conducted also on thin

tubes under combined tension-compression and reversed torsion. Two examples will
be cited. In Figure 4 we illustrate an experiment-model comparison for r._R-M247

tested at 982°C. Out-of-phase, strain-controlled loading is employed with the

von Mises effective strain held constant during cycling but with periodic strain

hold-times to observe the direction and magnitude of the stress relaxation. The

Bodner-Partom model predicts the essential features except for the transient direc-
tion of the stress vector during relaxation. The model prescribes this direction

to be radial toward the stress origin. The experiment shows that only asymptotically

at long time is the relaxation vector in the direction of the origin. Also (not

shown), the instantaneous direction of the strain-rate vector during the active

cyclic portion of the loading is not radial (Bodner-Partom model prediction) but
shows a small phase lag from the radial direction. An alternate model, such as

that of Walker (ref. l) which employs a "back-stress" type representation for direc-
tional hardening, does a more accurate prediction of these vectorial effects.
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Figure 5 shows that for alloy BI9OO+Hfthe cyclic hardening under out-of-phase
and in-phase cycling was equal. The same result was found for MAR-M247at all
temperatures. This contrasts with previous results on Hastelloy X where the cyclic
hardening under out-of-phase cycling was considerably greater than under in-phase
(proportional) cycling.

Variable strain-rate tests. A series of tests was performed on MAR-M247 at

several temperatures which included step-wise changes in strain rate. The results
are illustrated in Figure 6. One purpose of these tests was to determine if both

the hardening and rate-dependent constants in the Bodner-Partom model could be

determined from a single test (specimen) at a given temperature. The result was

partially successful in that the constants derived were used in the model correla-
tions shown. However, the constants derived showed some differences from a set

derived from multiple specimens each tested at a different strain rate. The latter

procedure would be preferred, although a good first approximation can be obtained

from the step-loaded single specimen.

HOT SECTION COMPONENT ANALYSIS

The component chosen for demonstration of the BI9OO+Hf unified model is the
airfoil portion of a typical cooled turbine blade. The foil was analyzed using
the MARC finite element program (ref. 3). The code was used at PWA with the Walker
model and subsequently at NASA Lewis (ref. 4) with both the Walker and Bodner-Partom
models for comparison. Figure 7a shows the finite element mesh used in the analysis.
The bulk of the airfoil was modeled with 8-node solid elements with regions on

the leading edge modeled with higher order 20-node solid elements. Figure 7b shows
the temperature distribution during the cruise portion of the flight spectrum.

The loading and boundary conditions were chosen to simulate a typical commercial
engine flight. The flight simulation is shown schematically in Figure 8 and includes
periods of taxi, takeoff, climb, cruise, descent, taxi, and shutdown. The spectrum
includes periods of transient loading (RPM) and temperature excursions as well
as long steady-state or hold periods. The maximum temperature excursion is about
IO00°C. Thus, the range of conditions exercises the constitutive model over a
wide range of the state parameters.

PWA exercised the foil through three full flight spectra using the Walker
model. Figure 9 shows the accumulation of inelastic strain at location A (Figure
7b) during all three flights. It is seen that the bulk of the inelastic strain
is accumulated during takeoff of the first flight. At the end of climb some reversed
inelastic strain is accumulated up to shutdown at this element. After the third
flight the amount of inelastic strain accumulation appears to be stabilizing.

Using the PWA-developed code with identical mesh size and flight spectra,
Kaufman et al (ref. 4) ran further simulations comparing a classical creep-plasticity
model with both the Walker and Bodner-Partom unified models. The effective stress
vs strain response at the airfoil critical location is compared in Figure I0 for
all three constitutive models. The unified models yield very similar results but
substantially different from the classical creep-plasticity model. Unfortunately,
no experimental results are available or easily obtainable for this complex problem.
It is noteworthy that a comparison of the CPU time requirements for these analyses
on a Cray computer indicates that there is essentially no difference between the
classical and unified approaches. For the problem cited, the CPU time was about
4000 sec with each model.
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CONCLUSIONS AND FUTURE WORK

The results to date have further demonstrated the ability of the unified consti-

tutive equations to model complex nonlinear, time- and temperature-dependent inelas-

tic deformation under complex loading conditions. A methodology for evaluating

the constitutive constants in the models from simple test conditions is evolving.
The demonstration that these improved models can be used in a general-purpose,

finite-element structural analysis code without penalty in computing time over
existing methods is significant.

In the final year of the program we will examine further the effects of thermal

history on the constitutive behavior of these nickel-base alloys with possible

modifications to the models to include effects of strain aging, microstructural

changes, and thermal history. Some experiments are also planned to assess the

effect of a thermal-barrier coating on the response of thin-walled, biaxial tubular
specimens.
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3-D INELASTIC ANALYSIS METHODS

FOR HOT SECTION COMPONENTS*

E. S. Todd

United Techno|ogies Corporation

Pratt & Whitney

The objective of this program is to produce a series of new computer codes that

permit more accurate and efficient three-dimensional inelastic structural analysis
of combustor liners, turbine blades, and turbine vanes. Each code embodies a pro-

gression of mathematical models for increasingly comprehensive representation of the

geometrical features, loading conditions, and forms of nonlinear material response

that distinguish these three groups of hot section components.

Software in the form of stand-alone codes is being developed by Pratt & Whitney

(P&W) with assistance from three uniquely qualified subcontractors: MARC Analysis

Research Corporation (MARC), United Technologies Research Center (UTRC), and the

State University of New York at Buffalo (SUNY-B). Special finite element models are

being constructed by MARC, while mechanics of materials models and constitutive
models are being assembled by UTRC. Development of advanced formulation (boundary

element) models is being shared by P&W and SUNY-B. Verification of the various

analysis packages is being done by P&W.

The technical effort of the Inelastic Analysis Methods program is divided into

two 24-month segments: a base program, and an optional program exercised at the

discretion of the government. The first year (Task I) of the base program dealt with

linear theory in the sense that stresses or strains and temperatures in generic

modeling regions are linear functions of the spatial coordinates, and solution
increments for load, temperature and/or time are extrapolated linearly from previous
information. The second half of the base program (Task II), as well as the option

program (Tasks IV and V), extend the models to include higher-order representations
of deformations and loads in space and time and deal more effectively with collec-

tions of discontinuities such as cooling holes and coating cracks. Work on Task IV

(special functions theory) has been completed, and the results are given in the
Third Annual Status Reports. Base program computer codes, hereafter referred to as

MOMM (Mechanics of Materials Model), MHOST (MARC-HOST), and BEST (Boundary Element

•Stress Technology), have been developed and delivered to NASA-Lewis Research Center.

Three increasingly sophisticated constitutive models are employed by MOMM,

MHOST, and BEST to account for inelastic material behavior (plasticity, creep) in

the elevated temperature regime. The simplified model assumes a bilinear approxima-

tion of stress-strain response and glosses over the complications associated with

strain rate effects, etc. The state-of-the-art model partitions time-independent

(plasticity) and time-dependent (creep) in the conventional way, invoking the Von
Mises yield criterion and standard (isotropic, kinematic, combined) hardening rules

for the former, and a power law for the latter. Walker's viscoplasticity theory

(ref. 1), which accounts for the interaction between creep/relaxation and plasticity
that occurs under cyclic loading conditions, has been adopted as the advanced

constitutive model.
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In brief, MOMM is a stiffness method finite element code that utilizes one-,
two- and three-dimensional arrays of beam elements to simulate hot section component
behavior. Despite limitations of such beam model representations, the code will be
useful during early phases of component design as a fast, easy to use, computation-
ally efficient tool. All of the structural analysis types (static, buckling, vibra-
tion, dynamics), as well as the three constitutive models mentioned above, are pro-
vided by MOMM. Capabilities of the code have been tested for a variety of simple
problem discretizations.

The MHOST code employs both shell and solid (brick) elements in a mixed method

framework to provide comprehensive capabilities for investigating local (stress/

strain) and global (vibration, buckling) behavior of hot section components. Over

the last decade, in order to support their commercially available software, the MARC

Corporation has accumulated a great deal of technical expertise creating new, im-

proved algorithms that will significantly reduce CPU (central processing unit) time
requirements for three-dimensional analyses• The NI_OST code development has taken

advantage of this expertise. The third generation (Task IV) HOST code is opera-

tional and has been tested with a variety of academic as well as engine-related
configurations•

Successful assembly of the all-new BEST code was possibly the most important
accomplishment of the base program effort• The challenge of extending basic theory

and algorithms to encompass inelastic dynamic effects in three-space was met by com-

bining the special skills and efforts of the research and programming teams at SUNY-B
and P&W. As with HOST, the third version of BEST is executable and has been

exercised with both small and large test cases• While _I_OST and BEST are currently

viewed as complementary, they are also competitors; and overall performance on large
inelastic models will be watched with interest as the codes mature.

Work on Task V (general functions theory) and application of the codes to repre-
sentative turbine blade and vane configurations is in process, and will be described

at the Fifth Annual HOST Workshop•

l •

REFERENCES

Walker, K. P.: "Research and Development Program for Nonlinear Structural
Modeling With Advanced Time-Temperature Dependent Constitutive Relationships,"

NASA CR-165533, November 25, 1981.
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3_ INELASTIC ANALYSIS METHODS FOR HOT SECTION COMPONENTS*

R.L. McKnight, P.C. Chen, L.T. Dame, R.V. Holt

H. HuanQ, M. Hartle, S. Gellin, D.H. Allen
and W.E. Haisler

General Electric Company

INTRODUCTION

Accomplishments are described for the 2-year program, to develop advanced 3-D

inelastic structural stress analysis methods and solution strategies for more
accurate and cost effective analysis of combustors, turbine blades and vanes. The

approach was to develop a matrix of formulation elements and constitutive models.
Three constitutive models were developed in conjunction with optimized iterating

techniques, accelerators, and convergence criteria within a framework of dynamic
time incrementing. Three formulations models were developed; an eight-noded

mid-surface shell element, a nine-noded mid-surface shell element and a

twentv-noded isoparametric solid element. A separate computer program has been

developed for each combination of constitutive model-formulation model. Each

proqram provides a functional stand alone capability for performing cyclic

nonlinear structural analysis. In addition, the analysis capabilities incorporated

intn each Droqram can be abstracted in subroutine form for incorporation into other

codes or to form new combinations.

OBJ ECT IVE S

The objective of this research was to develop analytical tools capable of

economically evaluatinq the cyclic time-dependent plasticity which occurs in hot

section enqine components in areas of strain concentration resulting from the
cnmbination of both mechanical and thermal stresses. The techniques developed are

capable of accommodating large excursions in temperatures with the associated

variations in material properties includinq plasticity and creep.

The overall objective of this research program was to develop advanced 3-D
inelastic structural/stress analysis methods and solution strategies for more

accurate and yet more cost-effective analysis of combustors, turbine blades, and

vanes. The approach was to develop a matrix of formulation elements and

constitutive models, three increasingly more complex formulation models and three

increasinqIv more complex constitutive models.

*Work done under NASA Contract NAS3-23698.
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CONSTITUTIVE MODELS

The three constitutive models were developed in conjunction with optimized
iteration techniques, accelerators, and convergence criteria within a framework of

dynamic time incrementing. These consist of a simple model, a classical model, and
a unified model. The simple model performs time-independent inelastic analyses

using a bilinear stress-strain curve and time-dependent inelastic analyses using a
Dower-law creep equation. The second model is the classical model of Professors

Walter Haisler and David Allen (Reference l) of Texas A&M University. The third
model is the unified model of Bodner, Partom, et al. (Reference 2). All models

were customized for a linear variation of loads and temperatures with all material
prooerties and constitutive models being temperature dependent.

FORMULATION MODELS

The three formulation models developed are an eight-noded mid-surface shell

element, a nine-noded mid-surface shell element and a twenty-noded isoparametric

solid element. Both of the shell elements are obtained by "degenerating" 3D
isoparametric solid elements and then imposing the necessary kinematic assumptions
in connection with the small dimension of the shell thickness (References 3

and 4). The eight-noded element uses Serendipity shape functions and the nine

noded element uses Lagrange shape functions. The eight-noded element uses Gaussian

quadrature for numerical integration, with nodal and surface stresses being

obtained by extrapolation/mapping techniques. Lobatto quadrature is being used

with the nine-noded element to effectively provide for direct recovery of the
stresses and strains at the surfaces and node points. The eight-noded element has

an excellent combination of accuracy and economy in the normal element aspect range

encountered when modelinq most hot section components. The nine-noded Lagrangian
formulation overcomes the shear locking problem experienced when the element

size-versus-thickness-aspect ratio becomes very large. The twenty-noded
isoDarametric element uses Gaussian quadrature.

COMPUTER PROGRAMS

A separate computer program has been developed for each combination of

constitutive model-formulation model. Each program provides a functional, stand

alone capability for performing cyclic nonlinear structural analysis. In addition,

the analysis capabilities incorporated into each program can be abstracted in
subroutine form for incorporation into other codes or to form new combinations.

These Droqrams will provide the structural analyst with a matrix of capabilities

involvi.ng the constitutive models-formulation models from which he will be able to

select the combination that satisfies his particular needs. The program

architecture employs state-of-the-art techniques to maximize efficiency, utility,
and portability. Among these features are the following:

(i) User Friendly I/O

o Free, format data _nput
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(ii)

0

0

0

(iii)

0

0

0

Global, local coordinate system, (Cartesian, Cylindrical, Spherical)

Automatic generation of nodal and elemental attributes

User-controlled optional print out

Nodal Displacements

Nodal Forces

Element Forces

Element Stresses and Strains

Programming Efficiency

Dynamic core allocation

Optimization of file/core utilization

Blocked col umn skyline out-of-core equation solver

Accurate and Economical Solution Techniques

Right-hand side pseudoforce technique

Accelerators for the iteration scheme

Convergence criteria based on both the local inelastic strain

and the global displacements

The abilitv to model oiecewise linear load histories was also included in the

finite element codes. Since the inelastic strain rate could be expected to change

dramatically during a linear load history, it is important to include a dynamic

time-i ncrementing procedure.

Three separate time step control criteria are used. These are the maximum

stress increment, maximum inelastic strain increment, and maximum rate of change of
the inelastic strain rate. The minimum time step calculated from the three

criteria is the value actually used. Since the calculations are based on values

readily available from the previous time step, little computational effort is

required.

TEST CASES

These formulation models and constitutive models have been checked out

extensiveIv aqainst both theory and experiment. Figure l shows the correlation

between Bodner's model in the eight-noded and mid-surface shell element (MSS8) and
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both experiment and other predictions (Reference 5). Figures 2 through 6

illustrate the predictability of the classical Haisler-Allen model. Figure 7 shows
a comparison of both Bodner's model and the simple model to both experiment and
independent predictions (Reference 6).

SOURCE CODE INFORMATION

These nine programs, both source (Fortran 77) and compiled, have been installed

and checked out on the NASA-Lewis CRAY-I machine. The interactive deck generator
has been installed on the NASA-Lewis AMDAHL machine.

Tahle l shows the lines of source code for each of the nine computer programs.

These numbers do not include the interactive deck generators.

TABLE I. LINES OF SOURCE CODE

Elements

20-Noded 8-Noded 9-Noded

Simple 8300 13,800 17,900

Consti tutive Hal sler-Al Ien 9200 16,300 19,000
Model s

Bodner 7300 13,800 17,600

Since these Droqrams use dynamic core allocation, they can b_ recompiled to
size for any specific machine• They are presently loaded for lOI bytes of core.

At this size, the maximum problem would be approximately 4000 nodes and lO00
elements, and 24000 degrees of freedom.

REFERENCES

l • Allen, D.H., and Haisler, W.E., "A Theory of Thermoplastic Materials,"

Computers and Structures, Vol. 13, pp. 129-135, 1981.

2. Bodner, S.A., Partom, I., and Partom, Y., "Uniaxial Cyclic Loading of
Elastic-Viscoolastic Material," ASME J. Appl. Mech., Vol. 46, p. 805, 1979.

3. Chang, T.Y. and Sawamiphakdi, K., "Large Deformation Analysis of Shells by

" Coml). and Struct., Vol 13, pp. 331-340, 1981Finite Element Method, . .

. Chanq, T.Y. and Sawamiphakdi, K., "Nonlinear Finite-Element Analysis of Shells

with Larae Aspect Ratio," presented at the Nonlinear Structural Analysis
Workshop, NASA-Lewis Research Center, April 19 and 20, 1983.
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COMPONENT SPECIFIC MODELING*

R.J. Maffeo, R.L. McKniqht, M.T. Tipton, and G. Weber
General Electric Company

INTRODUCTION

The overall objective of this program is to develop and verify a series of

interdisciplinary modelinq and analysis techniques that have been specialized to
address three specific hot section components. These techniques incorporate data

as well as theoretical methods from many diverse areas including cycle and

performance analysis, heat transfer analysis, linear and nonlinear stress analysis,

and mission analysis. Building on the proven techniques already available in these

fields, the new methods developed through this contract are integrated to provide
an accurate, efficient, and unified apDroach to analyzing combustor burner liners,
hollow air-cooled turbine blades, and air-cooled turbine vanes. For these

components, the methods developed predict temperature, deformation, stress, and

strain histories throughout a complete flight mission.

The base program for the component specific modeling effort is illustrated in

Figure (1). Nine separate tasks were arranged into two parallel activities. The

component specific structural modeling activity in Figure (2), was directed towards

the development of the analytical techniques and methodology required in the

analysis of comDlex hot section components. The component specific
thermomechanical load mission modeling effort illustrated in Figure (3), provides

for the development of approximate numerical models for engine cycle, aerodynamic,
and heat transfer analyses of hot section components.

THERMODYNAMIC AND THERMOMECHANICAL MODELS

The Thermodynamic Engine Model (TDEM) and the Thermomechanical Load (TDLM)

Model have been reported on extensively at previous HOST conferences. They have
been installed on the NASA Lewis CRAY for over a year where they have been

ex_rcised by both GE and NASA personnel. Figures 4, 5 and 6 show representative
pieces of input and output of these models. Figure 4 shows the input to the TDEM

definina a specific mission. Fiaure 5 shows the output of the TDEM giving the

enqine parameters for a mission. This is then the input to the TDLM. Figure 6

shows a snapshot of a portion of the output of the TDLM for a combustor nugget

showing the result of running the TDEM and TDLM to be local structural temperature

and pressure loadinq on a component.

COMBUSTOR STRUCTURAL ANALYSIS

The emphasis in Phase I of this program has been on automating the COSMO
procedure for the combustor liner. The COSMO procedure continues with the output

*Work done under NASA Contract NAS3-23687.
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of the TDLM being structured as a data file for use in the combustor component
specific model. Figure 7 defines the recipe which generates the combustor

structural model. Figure 8 is a snapshot of a typical run of the combustor model

when it was in the checkout phase as a free-standing code. As indicated, the model

contains a default set of recipe parameters, only changes to this list need be

given. After the recipe parameters have been set, only 5 parameters need be

specified to generate a 3D sector model of a combustor to perform a hot streak

analysis. The first parameter (shown as the number of exhaust nozzles) is required

to divide the 360 ° combustor into the proper number of sectors. The next parameter

(shown as the no. of circumferential elements) is used by the analyst to split up

the circumferential sector into a number of slices, NS, for the 3D elements. Next,

depending on the number of slices selected, the analyst can bias these slices by
sDecifvin(1 NS-I percents (program calculates final bias to total I00%). In this

case the biasing selected, starting at the hot streak, was 5%, 15%, and 30% with

the final slice being 50%. This is all the information that is required to

generate a 3D finite element model consisting of 20-noded isoparametric elements.
In this case the model consists of 648 elements, 3192 nodes and has 768 element

faces with pressure loading. Figures 9 and lO are graphical depictions of this 3D
model. The combustor then maps the temperatures and pressures from the TDLM onto

this model and generates data files for the structural analysis.

COSMO SYSTEM

Fiqure II shows a flow chart of the overall COSMO system including the action

Dositions of the adaptive controls developed in this program. This system includes

a bandwidth optimizer which is necessary to make the automatic remeshing/mesh

refinement activity possible. For the combustor, the following adaptive controls
have been incorporated into the system (the numbers are consistent with

Figure ll).

I. time increment

2. load increment

3. plasticity tolerances

4. creep tolerances

5. number of master region elements

6. number of slices

7. position of slices

8. row refinement

9. element refinement
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The first four adaptive controls are a function of the structural code being

used. For this system the code and the controls are those developed under, "3D

Inelastic Analysis Methods for Hot Section Structures." The other adaptive
controls are keyed from a decision grid as indicated in Figure 12. The gradients

in normalized stress, total strain, plastic strain, and creep strain will be used

to rank requirements.

REFERENCES

I. McKnight, R.L., "Component Specific Modeling - First Annual Status Report,"
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NASA CR-174925, 1985.
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Figure 6- Outputs From Combustor Thermodynamic Loads Model.
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17 02 90.0 18
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= Angle wrt, x - Axla

L = Length
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0 = Angle of Rotation

R = Radius of Curvature

(n) = Parameter Code Number

R 3 (20) I O2
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{
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I I

I I

I

I I
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0 - 90 ° {

(23)

o 0
0 = 180 - 2,
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!
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Figure 7. Combustor Liner Parameters.
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A MULTIAXIAL THEORY OF VISCOPLASTICITY

FOR ISOTROPIC MATERIALS

D.N. Robinson and J.R. Ellis

The University of Akron
Akron, Ohio

INTRODUCT ION

Many viscoplastic constitutive models for high-temperature structural

alloys are based exclusively on uniaxial test data. Generalization to multi-

axial states of stress is made by assuming the stress dependence to be on the

second principal invariant (J2) of the deviatoric stress, frequently called

the "effective" stress. Testing other than uniaxial, e.g., shear, biaxial,

etc., is generally done in the spirit of verification testing, not as part of

the data base of the model.

If such a J2 theory, based on uniaxial testing, is called upon to predict

behavior under conditions other than uniaxial, say pure shear, and it does so

poorly, nothing is left to adjust in the theory. The exclusive dependence on

J2 must be questioned.

For a fully isotropic material whose inelastic deformation behavior is

relatively independent of hydrostatic stress, the most general stress depen-

dence is on the two (non-zero) principal invariants of the deviatoric stress,

J2 and J3" These invariants constitute what is known as an integrity basis

for the material.

* This research was performed under NASA Grant NAG-3-379.
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Here, we present a time-dependent constitutive theory with stress depen-

dence on J2 and J3 that reduces to a known J2 theory as a special case. The

characterization of viscoplasticity can be made largely on uniaxial testing

but the "strength" of the J3 dependence must be determined by testing other

than uniaxial, e.g., pure shear•

Earlier studies (refs. I-3) have considered the inclusion of the invari-

ant J3 in the context of time-independent plasticity theory. The present time-

dependent formulation is guided by the form of the yield function introduced

in reference I.

STATEMENT OF THE THEORY

As in references (4-6) the starting point is the assumed existence of a

dissipation potential function

C_(_ij, _ij)* (i)

with the generalized normality structure

a_
_ij = _ (2)

ij

-_i j/h : a9 • (3)
i,]

Here, _ij and _ij denote the components of the applied and internal stress,

respectively• _ij denotes the components of inelastic strain rate and h is

a scalar function of the internal stress•

* The present treatment concerns only isothermal deformation, extension to

nonisothermal conditions follows as in ref. 5.
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We further assume, as in references (4-6), that the stress dependence

enters through two scalar functions F and G, i.e.,

_(F,G) (4)

in which

F(Zij) (5)

and

G(aij) (6)

Zij in equation (5) denotes the stress difference

Zij = Sij " aij ' (7)

where Sij and aij represent the deviatoric applied and internal stress, re-

spectively.

As indicated earlier, for a fully isotropic material, F and G can depend

only on the respective principal invariants of Zij and aij, i.e.,

F(jz,j3) (8)

and
^ ^

G(J2,J3) (9)

where

1
J2 : _ ZijZji

and

I

J3 : T ZijZjkZki

^ i

J2 = _ aijaji

^ 1
J3 : _ aijajkaki

(io)

(Ii)
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Guided by reference (1), we choose particular forms for F and G as

(J_ +CJ_) I/3

F(J 2 ,J3 ) - K2 I (12)

K2 (13)

Here, C indicates the "strength" of the J3 contribution. Note that for C:O

the functions F and G reduce to the J2 forms given in references (4 and 5).

Figure i shows plots of F:constant in a nondimensional normal/shear stress

space for several values of C. Included are the special cases C:O(v.Mises-J2) ,

C:-4(Tresca) and C:-l.75(Drucker), the latter being the value taken in refer-

ence I for a yield function in time-independent plasticity. The experimental

data points shown in figure i were obtained in preliminary experiments for de-

termining the flow surfaces F=constant for a stainless steel (ref. 7). These

few data suggest that the time-dependent behavior of this alloy may be some-

what stronger in shear than a J2 material. A value of C=IO appears to fit the

data reasonably well.

Using equations (4), (12), and (13) in equations (2) and (3) gives the

flow law,

cij = f(F)rij (14)

in which

2 2C

Fij = J2 Zij + T'J3 tij (15)

and

2

tij : ZikZkj - "_ J26ij (16)
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The evolutionary law becomes

aij = h(G)_ij " r(G) _ij

in which

_.2
_ij : J2 aij + _J3 gij

and

(17)

(18)

2 _ 6 (19)
gij = aikakj - "3 2 i3

from uniaxial testing.

test.

The functions f(F), h(G) and r(G) can be determined, as in references (4-6),

The value of C must be determined from a non-uniaxial

CALCULATED RESULTS AND DISCUSSION

Several calculations have been made using forms of the functions, f, h and

r and associated material parameters that are typical of ferritic chrome-based

and austenitic stainless-steel alloys. Qualitatively similar results can be

expected for nickel-based alloys. Figure 2 shows predicted hysteresis loops

over a constant strain range (A¢=0.6%) and strain rate (_=.OOl/m). The curve

in figure 2 labeled "uniaxial" can be thought of as having been carefully fit

on the basis of uniaxial data. Predictions of pure shear response are also

shown, corresponding to different values of C. That based on a J2 theory is

the curve labeled C=O. Even after tedious fitting of uniaxial cyclic data,

if the shear prediction does not correlate well with shear data, nothing can

be done in a J2 theory short of compromising the uniaxial correlations. The

present J2, J3 theory allows some flexibility in accurately predicting response

other than uniaxial through the parameter C. Note that the hysteresis loop

287



labeled C=lO, suggested by the data in figure 1, indicates a cyclic response

that is about 20% stronger than the J2 response (C=O).

Figure 3 shows predictions of creep response, i.e., behavior under con-

stant stress. Here, the strain-time curve labeled "uniaxial and shear C=O" re-

presents both the uniaxial response (using the strain scale on the left) and

the shear response for a J2 material (using the strain scale on the right).

Each shear response corresponding to a particular value of C is to be measured

using the right-hand shear strain scale. In creep, the effect of the J3 depen-

dence appears to be more pronounced than for strain cycling. Here, for C=IO

the creep strain after 100 hours differs by a factor of 2 from that for the J2

response (C=O).
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THERMOMECHANICAL CHARACTERIZATION OF HASTELLOY-X UNDER UNIAXIAL CYCLIC LOADING

J.R. Ellis*, P.A. Bartolotta, G.P. Allen, and D.N. Robinson*

NASA Lewis Research Center

Cleveland, Ohio

INTRODUCTION

In most high-temperature engineering applications, components are subjected to

complex combinations of thermal and mechanical loading during service. A number of

viscoplastic constitutive models have been proposed which potentially can provide

_athematical descriptions of material response under such conditions (refs. 1 to

_). Implementation of these models into large finite element codes such as MARC has

_iready resulted in much improved inelastic analysis capability for hot-section

•ircraft engine components.

However, a number of questions remain regarding the validity of methods adopted

in characterizing these constitutive models for particular hish-temperature

materials. One area of concern is that the majority of experimental data available

for this purpose are determined under isothermal conditions. This is in contrast to

service conditions which, as noted above, almost always involve some form of thermal

cycling. The obvious question arises as to whether a constitutive model

characterized using an isothermal data base can adequately predict material response

under thermomechanical conditions.

An experimental program was initiated within the HOST program at the NASA Lewis

Research Center to address this particular concern (ref. I0). This paper describes

the results of the most recent isothermal and thermomechanical experiments.

EXPERIMENTAL DETAILS

The equipment and procedures used in the isothermal experiments have been

described in detail previously (ref. II). These experiments were conducted under

uniaxial loading on closed-loop, electrohydraulic test systems. The specimens

tested had a 1.25-in. parallel working section with a 0.313-in. outside diameter.

Strains were measured over a l.O-in, gage length using an axial extensometer. The

specimens were heated using an RF induction heater and considerable effort was

expended in achieving uniform temperature profiles over the gage length. Usually,

temperatures fell within ±5 °C of the nominal test temperature throughout the

experiments.

The method of test system control and data acquisition is shown schematically in

figure I. Axial strain is programmed to follow a triangular waveform provided by a

Wavetek 175 function generator. The corresponding stress-time response is monitored

using strip chart recorders until fatigue failure occurs. In addition,

_The University of Akron.

• . ..-,,:i....._ _:_, _i__'c_ZD
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stress-strain hysteresis loops are recorded automatically at predetermined intervals

using a Bascom-Turner recording system.

In the thermomechanical experiments, specimens were again heated using an RF

induction heater. Specimen cooling was by means of the test system's water cooled

grips. This was the preferred approach as it allowed temperature profiles to be

maintained within acceptable limits during the cooling process. Also to assist in

this regard, the gage length over which strain measurements were made was reduced to

0.5 in. in these experiments. The net result was that temperatures in the

specimen's gage length were within ±I0 ° C of programmed values during temperature

cycling.

Another difference between the two sets of experiments is that a Data Genera[

S-20 computer was used for control purposes in the thermomechanical experiments_ As

indicated in figure 2, both axial strain and temperature were programmed to follow

triangular wave forms, these waveforms being 180 ° out-of-phase in the subject

experiments. As in the case of the earlier experiments, stress-time response was

monitored until fatigue failure occurred. It is important to note that the same -

type of specimen, loading system, and heating system were used in the two series of

experiments.

The material under investigation was Hastelloy-X in solution annealed

condition. Two heats of material were obtained in 0.75-in. o.d. bar form meeting

the requirements of Aerospace Material Specification (AMS) 5754H. As there was sQ_

question regarding the as-received condition of heat 1 material, specimens

manufactured from this material were reannealed after fabrication and then

micropolished to a surface finish of 8 rms. In the case of heat 2 material,

reannealing and micropolishing was judged unnecessary. The as-machined surface

finish of these specimens was 16 rms.

EXPERIMENTAL RESULTS

The results obtained in the isothermal experiments are shown in figures 3 to 6

as plots of stress range versus cycles. A logarithmic scale was selected for cyc[_

as it allows the early stages of hardening, that occurring over the first I00

cycles, to be presented in a straightforward manner.

Another technique adopted to aid interpretation of the isothermal data was that

of hardening curves determined at low, intermediate, and high temperatures were

plotted separately. As indicated in figures 3 to 6, a single strain range, 0.6%,

was used to generate the data presented here. Also as indicated, experiments

conducted on Heat 1 material investigated a strain rate of 0.001 sec -I while those

conducted on Heat 2 material investigated strain rates of 0.001 and 0.0001 sec -I.

In these exploratory experiments, no systematic attempt was made to investigate

the repeatability of the data. However, in the experiments conducted at the slower

strain rate, difficulties were encountered which meant that up to three attempts

were necessary on occasion to successfully complete an experiment. The results of

such repeat experiments are shown in figure 6 as they provide an indication as to

the reproducability of the isothermal data.

The results of six out-of-phase thermomechanical experiments are shown in figure

7. The method of data presentation is identical to that described above for the

isothermal data. Clearly in this case, however, the cyclic hardening curves apply
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for temperature ranges rather than individual temperatures. Finally, thermomeehani-

cal and isothermal data determined at temperature in the range 400 to 600 °C (752 to

1112 °F) are compared in figure 8. These data were selected as they serve to

highlight the differences in hardening behavior resulting from the two types of

cyclic loading.

DISCUSSION

As a first step, the three sets of isothermal data were analyzed to establish

general trends in the cyclic hardening behavior of Hastelloy-X. It was determined

that individual hardening curves exhibit three types of hardening which will be

termed early, transitional, and final in the following discussion.

In all three data sets, early hardening behavior, that occurring between cycles

I00 and 102 , is fairly systematic and repeatable. Over this cyclic range, hardening

appears to be approximately linear in the plots shown in figures 3 to 5. The amount

of hardening increases with temperature until reaching a maximum at 1200 °F

(649 °C). At this temperature, the increase in stress range over the first hundred

cycles is about double that occurring at the lower temperatures. As temperature is

increased further, the amount of hardening decreases until at 1600 °F (871 °C)

behavior is cyclically neutral. At still higher temperatures, the material exhibits

small amounts of cyclic softening.

Material response during the transitional hardening stage is complex and almost

certainly reflects aging processes occurring in the material during the

experiments. In the case of heat 1 material, transitional hardening was evidenced

between 102 and 103 cycles. In the tests conducted on heat 2 material, transitional

behavior occurred over both earlier and later cyclic ranges. Up to 900 °F (482 °C),

the slope of the hardening curves increase on the plots shown in figures 3, 4, and

5. At temperatures in the range I000 to 1200 °F (538 to 649 °C), the hardening

curves exhibit inflection points while at still higher temperature, the slopes of

the hardening curves decrease.

Material response during the final stage of hardening is again more

straightforward and is about linear on the semilogarithmic plots under discussion.

up to 1000 °F (538 °C), significant hardening is exhibited up to the point of

fatigue failure. Between 1000 and 1200 °F (538 and 649 °C), hardening rates are

drastically reduced which can result in the intersection of individual hardening

curves. At higher temperatures, final hardening rates reduce until at 1600 °F

(871 °C), behavior is essentially neutral.

It has already been noted that the cyclic hardening behavior of Hastelloy-X is

complicated by thermal aging occurring during the experiments. This raises the

possibility that some of the more subtle effects noted above might be sensitive to

variations in the chemical composition of the material. Some feel forpossible

heat-to-heat variability can be obtained by comparing the heat 1 results shown in

figure 3 with those for heat 2 shown in figure 4. Such comparisons show that the

strain ranges achieved on the first cycle of the heat 1 experimental are less by

about I00 MPa than those obtained in the heat 2 experiments. However, comparison of

the two sets of curves shows that the general hardening characteristics of the two

materials are very similar. The general trends of the data do not therefore appear

sensitive to variability in material composition.
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Questions also arise as to the role of strain rate in these isothermal

experiments. Comparison of the data shown in figures 4 and 5 shows that cyclic

hardening behavior at the two strain rates investigated is very similar up to

1300 °F (?04 °C). Over this range, the rates of hardening in tests conducted at

0.0001 sec -1 are marginally higher than those obtained on tests conducted at 0.001

sec -1. At higher temperatures, the most significant difference is that the stress

range achieved on the first cycle of tests conducted at the slow rate are much

reduced from those obtained at 0.001 see -1. Regardless of these first cycle

differences, material response is essentially neutral at both strain rates for

temperatures of 1600 °F (817 °C) and above.

One characteristic of the data which is of key concern to the experimentalist is

that of repeatability. This is particularly the case when particular combinations

of variables are characterized by single experiments only. The data shown in figure

6 provides some insight as to repeatability at least during the early and

transitional stages of hardening. The most significant difference between repeated

experiments is in first cycle response. Subsequently, the hardening behavior is

very similar in the repeat experiments. At particular numbers of cycles into the

test, stress ranges fell within about ±25 MPa of the mean. This is equivalent to

percentage deviations of the order of ±5% for stress ranges around 500 MPa.

Having established a fair degree of confidence in the validity of the isothermal

data base, the final and most important question addressed was what if any of the

trends noted above carry over to thermomechanical conditions. As noted earlier,

this is a major concern since service conditions usually involve thermomechanical

loadings whereas the data usually available for material characterization is

determined in isothermal experiments. A partial answer to this question can be

obtained by comparing data shown in figures 5 and ?. At temperatures up to 900 °F

(482 °C), the early hardening rates in the thermomechanical experiments can be seen

to be about twice those obtained in isothermal experiments conducted over the same

range of temperatures. The situation in the thermomechanical test conducted over

the temperature range 400 to 600 °C (?52 to 1112 °F) is somewhat different, as

indicated in figure 8. Here, the early hardening behavior is similar for the two

types of loading but the transitional and final stages differ significantly.

Specifically, the hardening in the thermomechanical test is about three times that

of the isothermal experiments. Clearly, the thermomechanical result could not have

been predicted given the isothermal data shown. At temperatures above 1300 °F

(704 °C), the isothermal and thermomechanicl results are similar. Thus, at these

temperatures, the feasibility of predicting the thermomechanical results from an

isothermal data base appears more practicable.

CONCLUSIONS

The following conclusions were drawn from the study of cyclic hardening in

Hastelloy X under isothermal and thermomechanical conditions.

l° Cyclic hardening under isothermal conditions ranges from modest hardening, to
drastic hardening, to modest softening as temperature increased. This

highlights the importance of covering the entire temperature range of interest
in characterization studies.

. Cyclic hardening under isothermal conditions is extremely complex at

temperatures in the range I000 to 1200 °F (538 to 649 °C). At both higher and

lower temperatures, behavior is less complex and it appears likely that the data

can be modeled using fairly simple mathematical representations.
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Cyclic hardening under isothermal conditions is not particularly sensitive to

heat-to-heat variations and to strain rate effects, at least over the range

0.001 to 0.0001 sec -I. Also, in terms of general hardening characteristics, the

data are fairly repeatable.

Cyclic hardening under thermomechanical conditions differs significantly from

that obtained in isothermal tests up to temperatures of about 600 °C (1112 °F).

The hardening rates in the thermomechanical tests are factors of 2 and above

greater than those obtained in isothermal experiments.

Cyclic response at temperatures above 600 °C (III "F) is similar under both

isothermal and thermomechanicl loading. In the limit, both types of loading

exhibit behavior that is essentially cyclically neutral. Clearly under these

conditions, an isothermal data base can be used more reasonably to model

thermomechanical response.

FUTURE WORK

The emphasis of future testing will be in generating a more complete

thermomechanical data base for Hastelloy X. Presently, experiments are being

conducted under uniaxial loading over temperature ranges of 400 °C and this will be

extended in later experiments to 800 °C. Also, it is planned to extend the

investigation to the torsional form of loading. The advantage here is that apparent

strains due to thermal expansion are second order effects in torsional strain

measurements and so do not complicate interpretation of the data.

One deficiency of the data discussed in this paper is that it is presented

entirely in the form of stress range versus cycles. Adopting this simplistic

approach, no consideration is given to the inelastic material response which is

occurring at various stages of individual cycles. This situation is being corrected

by the use of more efficient data acquisition systems. Procedures are being

developed which will allow the data to be reduced in a form more consistent with

theoretical developments.

I.

2.

3 •

4 •
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DETERMINATIONOF SURFACES OF CONSTANT INELASTIC STRAIN RATE

AT ELE_/ATED TEMPERATURE*

R. L. Battiste

S. J. Ball

Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831

ABSTRACT

An experimental effort to perform special exploratory multi-

axial deformation tests on tubular specimens of type 316 stainless

steel at 650°C (1200°F) is described. One test specimen was

subjected to a time-independent torsional shear strain test his-

tory, and surfaces of constant inelastic strain rate (SCISR_)

in an axial/torsional stress space were measured at various pre-

determined points during the test. A second specimen was sub-

jected to a 14-week time-dependent (creep-recovery-creep periods)

torsional shear stress histogram SCISRs determinations made at 17

points during the test. The tests were conducted in a high-tem-

perature, computer-controlled axial/torsional test facility using

an Oak Ridge National Laboratory developed high-temperature multi-

axial extensometer. The effort was successful, and for the first

time the existence of surfaces of constant inelastic strain rate

was experimentally demonstrated.

i. INTRODUCTION

In classical plasticity the concept of yield surfaces in multiaxial

stress space plays a central role, not only in the definition of initial

yielding but in determining subsequent plastic flow. At high temperatures

the deformation behavior of structural alloys is strongly time dependent.

Consequently, the significance of yield surfaces breaks down, and it has

been proposed that in their place the concept of surfaces of constant

inelastic strain rate might be utilized. Such surfaces, called SCISRs, can

be shown to have a potential nature and thus constitute the basis of a

rational multiaxial viscoplastic constitutive theory. To further pursue

such a concept, exploratory multiaxial test results are required.

*Research sponsored by NASA-Lewis Research Center through Interagency

Agreement No. 40-1447-84 with the U.S. Department of Energy and DOE's

contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.
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The objective of this effort was to provide supporting data, in the

form of surfaces of constant inelastic strain rate, for NASA's efforts to

formulate constitutive theories.

A surface of constant inelastic strain rate (SCISR) is determined by

loading the specimen at a constant effective stress rate in the two-dimen-

sional axial/torsional stress state in various directions until a predeter-

mined inelastic effective strain rate is reached. After each probe, the

stress is returned to the initial starting point; thus a locus of points

(surface or constant inelastic strain rate) is established.

Oak Ridge National Laboratory (ORNL) undertook the effort because of

its experience in constitutive equation development and high-temperature

testing and because of its existing multiaxial test facilities, including

computer-controlled axial�torsional test machines and high-precision, high-

temperature, multiaxial extensometers. This paper presents the experi-

mental results of two SCISRs test series at 650°C (1200°F) on 316 stainless

steel. One test investigated the effects of prior plastic "time-indepen-

dent" deformations on subsequent SCISRs, while the second test investigated

effects of prior creep "time-dependent" deformation.

The remainder of this paper is divided into four major sections. In

the first, the multiaxial test facility and test specimen are briefly de-

scribed. The software computer control programs are briefly described in

the second section, while the third section contains a discussion of the

test procedures, conditions, and data results. Finally, conclusions are

stated in the last section.

2. TEST FACILITY AND SPECIMEN

The multiaxial test facility is a high-temperature facility designed to

subject a tubular specimen to simultaneous axial and torsional loads as pre-

scribed by a computer control system, function generator, or under manual

control. The principal components of the multiaxial test facility (see

Fig. i) are an axial-torsional material testing system, a radio frequency

induction heating system, a computer-based data acquisition and control

system, a special ORNL-developed axial-torsional extensometer, and support

equipment (plotters, filters, indicator, etc.).

The MTS model 810 material test system consists of an axial-torsional

load frame, actuators, load cell, electronic control system, and hydraulic
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power supply. The load frame and actuators are rated for maximum loads of

222 kN (50 kips) and 2.8 N-m (25,000 in.-ib). An MTS load cell with reduced

rated maximum load capacity, iii kN (25 kips) and 1.4 N-m (12,500 in.-ib),

is used for greater accuracy and resolution. The control system is based on

the standard MTS model 442 controllers which provide closed-loop servo-

hydraulic control with a selectable feedback; load, strain, or stroke. The

system includes a cycle counter, a function generator, a phase shifter, and

several X-Y flatbed plotters. The controllers and load cell were calibrated

using a secondary standard (traceable to National Bureau of Standards) to

four selectable maximum loads for each channel, axial and torsional. These

maximum loads were 89, 44, 22, and 9 kN (20, I0, 5, and 2 kips) axially and

1130, 565, 128, and 57 N-m (I0,000, 5000, 2000, and 500 in.-ib) torsion-

ally. The hydraulic power supply is a constant volume 0.19 L/S (3 GPM) MTS

model 502.03 system.

A 5 kW Lepel model T-5-3-KC-BW high frequency generator heats the

specimen. The generator is closed-loop controlled with a Babber-Colman

model 520 temperature controller and an intrinsic Chromel-Alumel thermocou-

ple mounted on the outside surface of the specimen in the center of the gage

length. A water-cooled copper load coil is mounted around the specimen.

The major features of the computerized control and data acquisition

system are shown in Fig. 2. Control voltage signals are sent to the inte-

grators via the digital-to-analog (D/A) converters, where fixed input volt-

ages to the integrators give ramp-function set-point outputs to the MTS

system. Run, reset, and panic switches are provided. The axial and tor-

sional strain signals from the MTS are first conditioned (low-pass filtered)

and then sampled by analog-to-digital (A/D) converters, which have an inte-

grating feature to reject 60 Hz noise. The two set-point signals are also

sampled by A/D converters.

The computer utilizes an expanded version of the DEC FOCAL language, a

high-level interpreter language similar in structure to BASIC. The control

program as written for the present system is stored on three disk files,

which are swapped in and out of the core as required to execute the various

types of programs. The execution speed of the FOCAL program and the opera-

tions of the A/Ds and D/As and other peripherals are such that the required
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computations can be accomplished for l-s data sampling intervals. Exten-

sive software programs developed to execute the SCISRs testing effort will

be described in a later section of this paper.

An axial-torsional mechanical extensometer suitable for fatigue testing

tubes at high temperature was developed several years ago at ORNL. 1,2 For

the SCISRs tests, this original device was modified to provide greater

accuracy, better resolution, minimal backlash, and minimal noise character-

istics in a radio frequency environment. The extensometer in its present

form is shown positioned on a test specimen in Fig. 3. The instrument's two

quartz probes are located in indentations spaced 25.4 mm (i in.) apart on

the specimen. The differential axial displacement and differential rotation

between the indentations are translated to proximity transducers through a

system of Gimbal rings and swivels using flexural pivots for bearings. The

flexural pivots eliminate backlash and reduce the friction to a constant

small value. The HITEC Proximic proximity transducers are noncontacting,

and their output using HITEC model 3200 signal conditioning units is a

high-level signal, 0 to 10 DC volts for full-scale movement of 0.000 to

1.02 mm (0.000 to 0.040 in.). The electrical sum of two transducers gives a

measure of axial strain while the difference of two transducers measures the

torsional (one-half the engineering shear strain, y) strain. Two additional

ORNL-developed amplifier and filter modules are used to apply appropriate

scaling factors to give a direct measure of axial and tensorial shear

strain. The filter network is a three-pole low-pass Bessel filter with

selectable time constants for reducing the inherent transducer noise and

radio frequency induced noise.

These tests were conducted on tubular specimens fabricated from 51-mm

(2-in.) bar stock of 316 stainless steel, ORNL reference heat 8092297. The

specimens had a nominal 34.8-mm (1.37-in.) working section with a 26.04-mm

_I.025-in.) outside diameter and a 1.91-mm (0.075-in.) wall thickness, as

shown in Fig. 4. The specimens were solution annealed by heating to I065°C

(1950°F), holding for 30 minutes, and then forced-argon rapid cooled to

minimize residual stresses. The heat treatment process was performed in an

ert atmosphere of argon gas which produced no visible oxidation.

A room-temperature SCISR test was performed using the facility and

procedures described in this paper to access the high-temperature exten-

someter system. A specimen was installed and aligned in the facility. The
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axial and torsional extensometer outputs were adjusted to the equivalent

strain readings of full bridge foil gage systems for both axial and tor-

sional elastic load changes. The two crosstalk parameters between the

extensometer channels were adjusted for their minimum values of ±3 _e axial

strain for approximately ±200 _e tensorial shear strain and ±3 ue tensorial

shear strain for approximately ±300 Ue axial strain. Crosstalk strain-vs-

strain loops averaged 3 to 5 ue hysteresis at zero load or strain. The

torsional stress-strain histogram shown in Fig. 5 was executed on the virgin

specimen, and SCISRs were determined at the four indicated points. Only a

description of the extensometer performance during this test will be pre-

sented since high-temperature test results are of most interest here.

Analog load-strain plots of the extensometer outputs and the full bridge

foil gage outputs were nearly identical for all probes and preloads. For

example, during the preload from point 2 to 3, the torsional foil gage

bridge read a change in strain of 0.8965% while the extensometer read a

change of 0.8380%, for approximately a 6% difference. This is good agree-

ment since the bridge was composed of 3.8-mm (0.125-in.) foil gages in a

bending compensating configuration while the extensometer was essentially a

quarter bridge 25.4-mm (l-in.) noncompensating device. Also, during the

same preload, the axial foil bridge read a change of +27 Ue while the axial

extensometer channel read a change of +63 _c, thus verifying good

torsional-to-axial crosstalk characteristics.

3. DESCRIPTION OF TEST CONTROL PROGRAM

The computer exercises control over the axial and torsional stress set

point voltage inputs sent to the MTS system. Typically, a probe will begin

at a point near the center of the surface of constant inelastic strain rate

and proceed slowly outward at a prespecified rate and angle in the axial-

torsional stress plane. The elastic strain rate is measured and used as a

reference against which subsequent measurements are compared to determine

the inelastic strain rate (ISR). When the measured (total) strain rate

exceeds the elastic rate plus a specified ISR value (I00 _e/min for the

tests described here), the stress and strain values at that point are re-

corded, and the set points are driven back to the starting point.

When the program is executed, the operator is first asked to supply

scale factor information for the stress and strain signals, the values of
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es£imated elastic stress-to-straln ratios, the desired load rate (typically

i0 ksi/min) and ISR (i00 _e/min), and (optionally) preload target informa-

tion for up to two preload sequences to be run before the SCISR test.

After the set point ramps begin, the two strain signals are sampled

once per second for eight seconds to determine, by a least-squares fit

procedure, the individual strain rate values. From that point on, once

every second the stress and strain signals are sampled, and a new measured

effective strain rate, using RMS weighting of the axial and torsional rates,

is calculated every 3 s. This process continues until the ISR exceeds the

limit (typically i00 _e/min).

When the limit is reached, the set point integrators' input voltages

are set to zero (stopping the ramps), and the end point values of stresses,

strains, and strain deviations are recorded. The stress set point trajec-

tory is reversed (180 °) immediately to minimize creep at the surface; then,

after the set points reach their initial values, the program begins again at

the next preprogrammed angle, etc., until all 16 probes are completed. All

pertinent data from the runs are stored on hard disk (and later saved on mag

tape) for further analysis.

3. TEST PROCEDURES, CONDITIONS, AND DATA RESULTS

Each specimen tested was instrumented with four rectangular strain gage

rosettes prior to installation in the MTS axial-torsional test system.

These gages were used for alignment purposes to ensure correct application

of the loads. After alignment, the gages were calibrated in a full-bridge

arrangement, which compensated for bending, to read axial and tensorial

shear strain in order to check out and calibrate the high-temperature exten-

someter. Ten intrinsic Chromel-Alumel thermocouples were used to measure

the temperature profile; six of these were mounted on the outside surface of

the central 25.4-mm (1-in.) specimen gage length while four were attached to

the 28.58-mm (i.125-in.) outside diameter shoulder. The induction heater

load coil was adjusted to obtain a uniform temperature profile over the

specimen gage length at 650°C (1200°F). Final calibration at 650°C of the

extensometer in the elastic range was performed by adjusting its output to

the calculated strain values using the Nuclear Systems Materials Handbook _
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material property values for 316 stainless steel and the room-temperature

measured strain values. These gage factor changes varied with the largest

being approximately 5% and the smallest less than 1%.

Each of the two high-temperature tests was conducted using the above

described control system and SCISR program with the MTS testing machine

under load control. The target inelastic effective strain rate was

I00 _/min) and the probe loading rate was 0.069 MPa/min (I0 ksi/min) for

both tests. The nominal torsional stress-strain histogram for the first

650°C SCISR test program was that shown in Fig. 5, with the SCISRs corres-

ponding to the numbered points with one significant exception. After apply-

ing the initial preload shear strain of 0.5%, the initial probe for SCISR

No. 2 was made in the positive shear strain direction (the same direction as

the preload). Because the stress-strain curve was relatively flat, very

abrupt yielding apparently occurred during the probe, and as a result an

additional 0.34% shear strain was accumulated. Thus, the initial preload

was effectively 0.84% rather than 0.5%, and the second SCISR surface corre-

sponded to a preload of 0.84%. Following determination of SCISR No. 2,

the specimen was returned to zero load and strain, and SCISR No. 3 was

determined. The -0.5% preload was then applied and the test continued.

Figure 6 shows the results for all the surfaces of this test. Note that two

duplicate sets of probes were done for two of the SCISRs. The square sym-

bols on these plots represent the initial probe results and the circles

and triangles represent results from repeat probes which were occasionally

done to check questionable points. Load changes during the preloads were

conducted at a constant strain rate of 500 p_/min.

The initial SCISR is smoothly defined by two separate sets of probes.

The results show that the virgin specimen contained just a small amount of

anisotropy (the initial SCISR is not quite centered at zero), but the SCISR

is well described as a Mises type surface. Subsequent surfaces show a

little less consistency, and they move (up or down) along the torque shear

stress axis in the same direction as the last previous preload. The amount

of bias varies from 15 to 35% while the width along that axis is relatively

constant for the four surfaces.

A 14-week time-dependent SCISRs testing program at 650°C with torsional

creep loads was subsequently executed on a new virgin specimen. Whereas the

SCISRs determinations in the first test series were after "time-independent"
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preloads, the emphasis of this second test was on time-dependent effects.

Figure 7 depicts the planned or nominal program with a duration of 14 weeks

(98 days) and 17 points of SCISR determinations. The test was executed with

several exceptions to this planned program; therefore, the actual torsional

stress vs time histogram for the time-dependent portion of the test is shown

in Fig. 8.

A torsional stress level, Zo, of 88.3 MPa (12.8 ksi) was chosen to

produce an expected creep shear strain, _/2, accumulation of about 0.5% in

1008 h (42 days) of testing. The virgin specimen was cycled at 650°C under

strain control to introduce isotropic hardening and minimize the plastic

strain on the initial loading. Forty-five cycles were performed with a

tensorial shear strain range of ±0.173% and a strain rate of 0.05%/s. A

constant axial compressive stress of approximately 24 MPa (3500 psi) was

accidentally applied to the specimen during these cycles because of an

inducted zero shift in voltage on the axial load channel. After the

cycling, the axial load cell cable was rerouted away from a radio fre-

quency cable which eliminated the zero shift. Peak-to-peak torsional shear

stresses of ±90.1MPa (±13.07 ksi) were attained by the last cycle.

The specimen was loaded to the target torsional stress level, 88.3 MPa,

under MTS load control after determination of two initial SCISRs. A large

plastic tensorial shear strain, which the cycling was supposed to prevent,

occurred (approximately 0.43%) and a consequent large creep rate was ob-

tained (approximately 0.05%/h after 4 hours). The torsional stress level

was therefore lowered to 40 MPa (5.8 ksi) at the end of the fourth hour.

The test continued without incident until a plant power failure oc-

curred between SCISR Nos. 9 and I0 (with no load on the specimen). The

specimen was reheated and the test continued. Several subsequent surfaces

after the power outage showed a definite bias in the negative axial direc-

tion. A possible explanation for this behavior is that an overload could

have occurred in the negative axial direction during the power failure.

This is possible since the hydraulic power supply provides some pressure

while spinning down after a power loss, but control of the servovalve is

immediately lost.

The torsional shear stress level was increased to 60 MPa (8.7 ksi)

between SCISR Nos. 14 and 15 because most of the earlier surfaces were

similar and more time-dependent creep deformation could be accumulated at
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the higher stress. This increase led to exceeding the calibrated strain

limit of i%, but no strain measurement degradation was observed.

A total of 35 SCISRs was determined, at least two at each histogram

point (see Figs. 7 and 8). Figure 9 shows the first initial surface (SCISR

No. I, Figs. 7 and 8), the last surface after the first creep period (SCISR

No. 7, Figs. 7 and 8), the last surface after the recovery period (SCISR

No. 13, Figs. 7 and 8), and the last surface after the final creep period

(SCISR No. 17, Figs. 7 and 8). A small amount of contraction along the

axial stress axis and slight movement in the plus shear stress direction of

SCISR No. 7 relative to SCISR No. 1 can be observed. There appears to be no

changes in the remaining surfaces, either quantitatively or qualitatively.

5. CONCLUSIONS

A key result of this testing effort is that surfaces of constant

inelastic strain rate exist and can be determined or measured at an elevated

temperature, 650°C. This conclusion is validated or deduced by the execu-

tion of the test programs and by the consistency of the surface results,

especially the repeated surfaces. To our knowledge, this is the first

successful determination of high-temperature surfaces of constant inelastic

strain rate.

Although conclusions regarding the effect of these SCISRs data on

different theories will be left to the constitutive equation developers,

several results can be stated. First, the surfaces did not move or change

shape in the axial/torsional stress state by any large significant amount.

Second, by comparing Figs. 6 and 9, a deduction that plastic deformations

have a larger effect than creep deformations can be stated. Last, SCISRs

determined immediately after large plastic deformation (see Fig. 6) show

more inconsistent results than SCISRs which have not undergone immediate

prior plastic deformations. It is believed that this behavior is real and

not a result of the testing system. Therefore, the state of the material

may not have been in a steady-state condition at the time of the SCISR

determinations.

Another conclusion of the effort is that the extensometer system and

software control system performed extremely well in a difficult applica-

tion. It was first necessary to measure high-temperature strains (axial

and torsional) which were decoupled, then to differentiate these signals
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with as little noise as possible to attain a reasonably small target inelas-

tic strain rate, which, in turn, would minimize changes in state of the

material during a surface determination. Plus, the above process took

place in a noise generating radio frequency induction heating environment.

I ,

,

.
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Fig. i. Multiaxial test facility used in SCISRs tests.
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Fig. 5. Torsional stress-strain history for reference SCISRs test

program. SCISRs were determined at the four labeled points. Each SCISRs

measurement consists of 16 sequential probes to a maximum effective inelas-

tic strain rate of 0.01%/min. The shear strain is tensorial strain

(one-half the engineering shear strain, y).
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CONSTITUTIVE MODELING FOR SINGLE CRYSTAL SUPERALLOYS*

D.C. Stouffer, N. Jayaraman, M. Sheh and D. Alden

University of Cincinnati

INTRODUCTION

The inelastic response of single crystal 717' superalloys is quite

different from the behavior of polycrystalline nickel base superalloys.

Upto a critical temperature the yield stress of single crystal alloys is a

function of the material orientation relative to the direction of the

applied stress and the material exhibits significant tenslon/compression

asymmetry [I]. This behavior is primary due to sllp on the octahedral slip

system. Above the critical temperature there is a sharp drop in the yield

stress, cube slip becomes more predominant and the tension/compression

asymmetry is reduced. Similar orientation and tenslon/compression asymmetry

is observed in creep and secondary creep above the critical temperature is

inferred to occur by octahedral slip [2]. There are two exceptions to this

behavior. First loading near the [111] orientation exhibits cube slip at

all temperatures, and; second, loading near the [001] orientation produces

only octahedral slip at all temperatures.

LEVEL I CONSTITUTIVE MODEL

Earlier in the grant period, a constitutive model and finite element

was developed for Rene N4 and verified using published results near the

critical temperature [3].

In summary, the constitutive model Is based on separating the total

global strain into elastic and inelastic components. The elastlc strains

are calculated using cubic symmetry. The inelastic strain rate is

calculated by summing the contributions of each slip system. The inelastic

*,.,_k done under NASA Grant NAG3-5]1.
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L

slip rate on each sllp system is computed from a local inelastic

constitutive equation that depends on local resolved shear stress components

in each sllp direction and local state variables. The orientation

dependence andtension/compresslon asymmetry was incorporated using the

"core width effect" proposed by Lall, Chin and Pope [4]. The constitution

model for local sllp also is based on a system of state variables to model

the drag stress. Back stress was not included since this typically is

associated with dislocation pile-ups at obstacles llke grain boundaries

which are absent in single crystals.

Typical calculations for an earlier chemistry of Rene N4, designated as

VF 317 [5], were completed using the above equations imbeded in a twenty

noded isoparametrlc brick. The combined constitutive equation and finite

element was developed to model any piecewlse linear load history and

incorporated a dynamic time incrementing procedure. The calculated and

experimental results are shown in Figure I for tensile tests at a constant

strain rate of 8.33 x 10 -5 sec -I and three orientations. Tensile creep

curves for seven specimens and the same three orientations is shown in

Figure 2. The test temperature is 732°C which is close to the critical

temperature and the maximum orientation effect.

LEVEL II MODEL DEVELOPMENT

The above combined constitutive and finite element model was successful

for predicting both the orientation dependence and tension/compression

asymmetry for tensile and creep histories. The model proved to be

inadequate for fatigue due to its simplicity. In particular, there is no

means of capturing both the short time strain hardening and the long term

cyclic hardening observed in fatigue. Further, there is evidence that
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dislocations can pile-up at the _-_' interface at temperatures above the

critical temperature. Thus, a set of local back stress state variables,

similar to [6], have been incorporated into the model for both octhadedral

and cube slip system. Further a set of computer programs have been written

to evaluate the material parameters using a nonlinear optimization

technique. The programs have been tested in a preliminary mode and they

will be used in conjunction with the experimental program.

EXPERIMENTAL PROGRAM

The experimental program consists of approximately 50 tests at five

temperatures, five orientations and several strain rates. In most cases the

test will be stopped before failure to examine the active sllp mechanisms in

the strain range of interest. The work will primarily focus on monotonic

tension at different strain rates and fatigue properties as a function of

orientation. Creep will not be included in light of the above success with

creep predictions. There will also be a group of nonstandard tests to

evaluate the predictive capabilities of the model.

The initial phase of the experimental program is at 982°C (1800°F)

since the earlier work was at 760°C (1400°F). This allows investigation of

global strain resulting from the combined octahedral and cube sllp

mechanisms. The initial test matrix includes two tests each in the [001]

and [111] orientations to isolate the octahedral and cube sllp systems,

respectively. The remaining tests are in the [123] and [110] orientations.

This set of tests will be carefully evaluated before completing the test

matrix at 982°C. The tests matrix for 760°C will be similar to that at

982°C. A few tests will be done at 1100°C, 870°C and 650°C.

These mechanical tests are being carried out on a closed loop MTS

servohydraulic test frame. These are axial strain controlled tests in which
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load, axial strain and diametrical strain are monitored. An induction

heating unit wlth microprocessor temperature controller is used for heating

the specimens to temperature. Typically, the temperature was found to have

a maximum gradient of 3°F through the gage length of the sample at 892°F.

An example, the axial and diametrical stress-straln response of a specimen

oriented in the [011] direction is shown in Figure 3. The diametrical

extensonmeter is in the [01T] direction. Notice that the elastic

diametrical strain is positive which agrees with the values for the Polsson

ratio shown in Figure 4.
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PROGRESS REPORT ON CONSTITUTIVE MODELLING OF SINGLE CRYSTAL

AND DIRECTIONALLY SOLIDIFIED SUPERALLOYS*

E.H.Jordan** and K.P.Walker***

INTRODUCTION

The trend towards improved engine efficiency and durability places increasing

demands on materials that operate in the hot section of the gas turbine engine.

These demands are being met by new coatings and materials such as single crystal

and directionally solidified nickel-base superalloys which have greater creep/fatigue

resistance at elevated temperatures and reduced susceptibility to grain boundary

creep, corrosion and oxidation than conventionally cast alloys.

This report discusses work carried out as part of a research program aimed at

the development of constitutive equations to describe the elevated temperature

stress-strain-time behavior of single crystal and directionally solidified turbine

blade superalloys. The program involves both the development of suitable
constitutive models and their verification through elevated temperature

tension-torsion testing of single crystals of PWA 1480.

DISCUSSION

Two types of constitutive models have been developed to describe the

deformation behavior of single crystal and directionally solidified superalloys. The

first type makes use of a macroscopic continuum mechanics approach in which

unified viscoplastic constitutive relations are developed for materials which exhibit

cubic and transversely isotropic anisotropy. A second type uses crystallographic slip

theory in an attempt to model the metallurgical processes governing • the

deformation behavior of single crystal and directionally solidified alloys.

The macroscopic models have the advantage of requiring relatively few material

constants and they can be rapidly integrated over a given strain-time history. We

have found, however, that they do not represent the deformation behavior of single

crystal alloys as accurately as the micromechanical formulations based on

* Work Performed Under NASA-LEWIS Grant NAG3-512.

** University of Connecticut, Storrs, Connecticut, USA

*** Engineering Science Software, Inc., Smithfield, Rhode Island, USA
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crystallographic slip theory. For example, the best correlation between theory and

test results has been obtained by using a unified constitutive model in which the

equilibrium stress (back stress or kinematic s_trees) hardens with inelastic strain in

an anisotropic manner; that is, the equilibrium stress increments harden with

inelastic strain increments through a fourth order tensor which exhibits cubic

symmetry for the single crystal and transversely isotropic symmetry for the

directionany solidified superalloys. This model gives reasonable predictions of the

high temperature cyclic deformation behavior of single crystal specimens whose axes

are oriented in the 001 and _II directions, since the material constants in the

model were derived from specimens oriented in these directions. We have not yet
tested the macroscopic model to predict the cyclic deformation behavior of

specimens oriented in the 011 direction or to compare with the torsional behavior

of specimens oriented in the 001 direction, but such comparisons are in progress.

The second type of model is based on crystallographic slip theory. Each slip

system in the material is assumed to shear according to a unified viscoplastic

constitutive relation. At temperatures below 750°C the single crystal alloy PWA

1480 deforms by octahedral glide of its crystallographic planes, while cube slip

becomes an increasingly important deformation mode at temperatures above 750°C.

We have found that both slip systems are required to model the constitutive

behavior of PWA 1480 at 1600°F. The material constants for octahedral slip can be

found by axial tension-compression testing of tubular specimens oriented in the 001

direction..This induces no cube slip in the specimens since the resolved shear stress

promoting slip on the cube crystal planes is zero for axial tension-compression

tests. The material "constants for cube slip are then obtained by testing the 001

oriented tubular specimens in torsion, since this induces slip on both the octahedral

and cube crystallographic planes. The cube constants may also be obtained from

axial tension-compression testing of specimens oriented in the 011 and i11

directions,since these tests also activate both the octahedral and cube slip systems.

We have found that the material constants obtained from 001 and 711 axial tests

allow an accurate prediction of the axial behavior of 011 oriented specimens.

A model for directionally solidified alloys has been derived by embedding the

single crystal formulation in a transversely isotropic self-consistent theory. This

model has not yet been tested due to the lack of an experimental data base.

RESULTS

I. Single crystal viscoplastic constitutive models based on both macroscopic

continuum mechanics and on crystallographic slip theory have been formulated and

programmed as FORTRAN subroutines suitable for inclusion in the MARC

nonlinear finite element program. Adapting the routines to other nonlinear codes is
a trivial exercise.

2. Directionally solidified viscoplastic constitutive models based on both macroscopic

continuum mechanics and on a self-consistent theory have been formulated, but
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have not yet been tested or programmed due to the lack of a suitable experimental

data base.

3. The macroscopic single crystal model is not as accurate as the model based on

crystallographic slip theory. An anisotropic equilibrium stress state variable is

needed in the macroscopic formulation to model the cubic anisotropy inherent in

single crytal superalloys.

4. Both octahedral and cube slip systems are needed to model the deformation

behavior of PWA 1480 single crystals at 1600°F. When the material constants are

obtained from 001 axial tests and from either 001 torsion tests, or from 111 axial

tests, the model predicts accurate deformation behavior in the 011 tests. Predictions

•of axial strain rate dip tests for specimens oriented in the 001 direction are also of

acceptable accuracy as shown in Figures 1-3.

5. Yield stress asymmetry is observed in PWA 1480. At temperatures below 750°C

the yield stress asymmetry can be predicted according to the cross-slip theory of

Takeuchi & Kuramoto, and by the Shockley partial constriction theory of Lall,

Chin, Pope, Ezz, Paidar, Shah & Duhl. However, at 1600°F and above the

preceding theories do not work. At temperatures below 750°C the preceding theories

are in accord with the experimental results in showing that the yield stress in

tension exceeds that in compression in the 001 corner of the stereographic triangle,

with the reverse being true in the 011 and Tli corners. At 1600°F and above, the

yield stress in compression exceeds that in tension in all three corners of the

stereographic triangle at strain rates above 10-4 sec-_. The yield stress asymmetry

also exhibits a strong rate dependence in which the yield stress is larger in tension

than compression at low strain rates but is smaller at high strain rates. This

dependence of the asymmetry on strain rate increases with increasing temperature,

but cannot be modelled at present.

6. The material constants obtained from hysteresis tests at strain rates exceeding

10-e sec-l cannot model the deformation behavior observed in long term creep tests

where the secondary creep rate is less than 10-7 sec-I. It was hoped that this

would not be the case. Leverant et al have proposed that primary creep occurs due

to the dislocation motion of <112> slip systems on the octahedral (111} planes and

that secondary creep occurs due to dislocation motion of <110> slip systems on the

(111} planes. The present model cannot predict the long term secondary creep

behavior based on the octahedral glide of the <110> systems. Possibly the <112>

slip systems operate in both primary and secondary creep and we are investigating

this behavior.

7. An experimental arrangement has been built and is now operational which allows

biaxial tension-torsion experiments to be conducted under thermomechanical

loading conditions. The software to input any given strain-temperature history has

also been written and is now in operation. Experimental results are stored directly

on floppy diskettes which can be used to drive the software for determining the

material constants in the constitutive models.
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8. In the last reporting period the material constants were determined by using the

general purpose nonlinear optimization code CONMIN. A more suitable approach is

now used in which the material constants are determined by a nonlinear least

squares program developed specifically by the authors to determine material

constants from experimental data files.This program requires the constitutive model

to be integrated over the strain historiesin the experimental data files,and the

nonlinear least squares approach necessitates the use of an iterative technique.

Because of the large amount of integration required it is necessary to integrate the

single crystal constitutive model very rapidly. This is accomplished by casting the

complicated three dimensional form of the model into three much simpler models

which are suitable for the axial integration of specimens oriented in the 001 and

311 directions, and for the torsional integration of specimens oriented in the 001

direction.
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HIGH TEMPERATURE STRESS-STRAIN ANALYSIS

Robert L. Thompson and Paul E. Moorhead

NASA Lewis Research Center

Cleveland, Ohio

The objectives of the high-temperature structures program are threefold: to

assist in the development of analytical tools needed to improve design analyses and

procedures for the efficient and accurate prediction of the nonlinear st_/ctural

response of hot-section components; to aid in the calibration, validation, and

evaluation of the analytical tools by comparing predictions with experimental data;

and to evaluate existing as well as advanced temperature and strain measurement

instrumentation. As the analytical tools, test methods, tests, instrumentation, as

well as data acquisition, management, and analysis methods are developed and eval-

uated, a proven, integrated analysis and experiment method will result in a more

accurate prediction of the cyclic life of hot section components.

TEST FACILITIES

The two test facilities at Lewis which support the development of the analytical

tools and the evaluation of advanced instrumentation are the high-temperature

structures laboratory and the structural component response test facility. Both of

these facilities have the capability to conduct controlled thermomechanical cyclic

experiments under computer control. Small cylindrical bar and tubular specimens are

tested in the high-temperature structures laboratory (see fig. I) using uniaxial and

biaxial test machines. Larger specimens such as flat plates, cylinders, and

combustor liner segments are tested in the structural component response test

facility, which consists of two rigs that operate at atmospheric pressures.

Flat-plate specimens (5 by 8 in.) are tested in the bench-top quartz lamp rig (see

fig. 2); large, cylindrical (20 in. diam.) and combustor liner specimens are tested

in the annular quartz lamp rig (see fig. 3). The high-temperature structures

laboratory, the bench-top quartz lamp rig, and the annular quartz lamp rig are

operational.

High Temperature Structures Laboratory

Two uniaxial test machines (load capacity, ±20-kip) and two recently installed

biaxial test machines (±55-kip load in tension/compression and 25-kip in torsional

capacity) are used in the high-temperature structures laboratory for deformation

testing. Two new uniaxial test machines have been purchased to replace the existing

uniaxial machines. Each of these machines is computer controlled by an $20 Data

General computer. A larger Data General computer (MY/4000) is used for data

storage, management, reduction, and analysis. Five-kilowatt radiofrequency

induction heaters are used with the uniaxial machines, and 50-kW audiofrequency

induction heaters are used with the tension/torsion test machines. Instrumentation

includes high-temperature water-cooled uniaxial extensometers for measuring strains

on the uniaxial test machines. Two high temperature biaxial extensometers will be
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tested and evaluated on the biaxial test machines. A third high-temperature biaxial

extensometer has been evaluated as part of an interagency agreement with the Oak

Ridge National Laboratory.

High-Temperature Laboratory Test Results and Constitutive Model Verification

One of the concerns about viscoplastic constitutive models, which for the most

part are based on uniaxial isothermal test data, is their ability to accurately

predict stresses and strains for cyclic thermomechanical conditions. To begin to

assess this effects both in-phase and out-of-phase (temperature and strain) uniaxial

nonisothermal tests have been conducted at NASA Lewis.

For illustration purposes, a comparison of out-of-phase uniaxial nonisothermal

(TMD) experimental data with predictions from four unified models is shown in figure

4. The strain and temperature variations are linear (saw tooth) and 180 ° out-of-

phase. The strain rate is 0.000046 in./in.-sec., the total strain range is ±0.3

percent, and the temperature range is 395 to 606 °C (743 to 1123 °F). The period is

295.3 see/cycle. The temperature range selected is representative of a location on

a combustor liner near the cooling holes, one of the several critical failure loca-

tions on a combustor liner. Qualitatively, the Walker and Bodner models predict

reasonably well the uniaxial out-of-phase nonisothermal hysteresis response compared

with the experimental data, but quantitatively, to accurately predict the shape and

levels of the cyclic response, further refinements to the models are required.

Additional tests are underway to expand the data base.

Bench-Top Rig

The major components of the bench-top quartz lamp rig are shown in figure 2.

Four quartz lamps (6 kVA) are used to heat the plate specimens. The lamps are air

cooled, and the test fixture is water cooled. A manifold provides cooling air to

the top surface of the test plate. The cooling air to the plate can be preheated to

400 °F. A lamp-out detection system determines when a lamp has burned out.

A dual-loop programmable controller, a microprocessor, is used to control the

power to the lamps. A specified power-time history is programmed into the micro-

processor, and the cooling air temperature and flow rate are appropriately set so

that when combined, the desired thermal cycle is imposed on the test plate.

Thermocouples and an infrared thermovision system are used to obtain surface

temperatures on the plate. There are provisions for taking 30 thermocouple

measurements. A viewport, consisting of a 5-in.-diameter quartz window, provides

access for obtaining an infrared thermal image. Both thermocouple and thermal image

data are obtained on the cool side of the test plate. Only thermocouple data are

obtained on the hot side (facing the four quartz lamps) of the test plate. The

thermocouple data provide temperatures at discrete points, while the infrared system

provides detailed maps of thermal information about the test specimen.

During a test run both the facilities data (pressures. flows, power, etc) and

the research data (primarily temperature) are acquired for each thermal cycle using

the ESCORT II data acquisition system at Lewis. These data can be stored

automatically once every second on the Amdahl computer. The software, however, does

allow for varying the time at which data are taken during a thermal cycle. These

data can be displayed on CRT's in the control room with about a 4-sec delay time.
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To obtain real time readings of pertinent data, a strip chart recorder with nine

channels is used.

The raw thermal images obtained from the infrared camera are stored on a VHS

tape recorder, with the clock time superimposed on each image. Images of the test

plate of from about 4 to about I in. in diameter (for finer resolution of

temperatures) can be obtained with the zooming capability of the infrared system.

Thirty thermal images are captured on tape every second. A computer system is then

used to process, reduce, enhance, and analyze the transient temperature

information. These data are also compared with the thermocouple data. Thermocouple

data are used in the calibration of the infrared system.

Bench Top Rig Test Results

Some of the salient results of tests conducted on a Hastelloy-X flat plate, with

dimensions of 8 by 5 by 0.05 in. are as follows: The plate temperatures are very

repeatable from cycle to cycle. A 20-sec ramp time from low to peak temperature on

the plate was achieved. The nominal life of the quartz lamps is 500 thermal

cycles. Actual lamp life, however, varies depending on power settings (maximum or

minimum, the hold times at those settings, and the ramp rates for a given thermal

cycle. The infrared thermovision system provides a qualitative measure (maps) and,

in some cases, a quantitative measure of transient surface temperatures. The

experience, data, and other information obtained from the bench-top rig tests have

benefited the tests conducted on the annular quartz lamp rig.

As an example of how the bench-top rig was used to evaluate a high-temperature

strain measurement system for possible future use on the annular rig, a cooperative

effort with UTRC and Lewis instrumentation personnel was undertaken to evaluate a

laser specklegram system. The objective of the research program was to perform a

demonstration test of laser speckle photographs by measuring strain on a flat

plate. The demonstration test was a success; however, the inability to measure

strain in some cases and accuracy of strain measurements in other cases were less

than hoped for, but the system has potential. Preliminary temperature and

structural analyses of the flat plate tested are underway and prediction of strains

in the plate will be compared with the experimental data.

Another technique, high resolution photography, was employed to measure strain

on plates in the bench rig. For this technique, a grid system of 0.5 in. squares was

marked on the plate with a scribe or painted on with high temperature paint as shown

in figure 5. The grid system is for the convenience of measuring strain, as strain

can be measured between any two points which can be visually identified in the

photograph. Technical Pan 2415 film was used which has a nominal resolution of 400

lines/mm. This would allow resolution of 0.0001 in. at IX magnification.

Photographs are made of the test plate in the original condition and at subsequent

temperatures during the heating cycle.

In-plane displacements are determined by measuring the change in dimensions of

the grid squares between two temperatures. A machinists microscope was used to

measure these dimensions. The instrument used in this case reads out to 0.00005

in. With this system, measurements to 0.001 in. appear feasible and better

accuracy is theoretically possible.

Out-of-plane distortion can be measured by placing boron fibers in front of the

test plate (in the case on the quartz window) and using a single flash to illuminate
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the plate. A sharp shadow is cast on the plate from the boron fiber. Lateral

displacement of the shadow from one test condition to another indicates out-of-plane

displacement of the test plate. The displacement is a function of the tangent of

the angle of illumination. It may be noted that a curved plate gives a curved
shadow.

Preliminary results comparing measured and calculated strains are

Strain Comparison
direction

From the twice calculated value up to l order of
magnitude larger

Close to calculated value and up to same order of
magnitude

These results are encouraging and with refinements in measuring and computer codes,
closer results may be expected.

Annular Rig

Figure 3 shows the annular quartz lamp rig installation and its major compo-

nents. This rig is being operated under a cooperative agreement with Pratt &

Whitney Aircraft (P&WA). G. Pfeifer and D. Sullivan are the P&WA coinvestigators on
this project.

The quartz lamp heating system used to cyclically heat a test liner is shown in

figure 6. One-hundred-twelve 6-kVA lamps configured circumferentially in 16

sectors, each having 7 lamps, are used to heat a 20-in.-diameter test liner. This

system, in addition to drawing up to 672 kVA of 480-V power, requires 3.5 Ib/sec of

ambient temperature air at 5 psig, 1.5 Ib/sec of ambient temperature air at 1 psig.

and 80 gal/min of specially treated water for cooling the rig.

A natural-gas and air mixture is burned in a combustor can upstream of the test

section to provide preheated cooling air to the test liner. Cooling air tempera-

tures of from 400 to 600 °F can be obtained by varying the fuel/air mixture ratio.

The cooling airflow rate is variable from about 4.0 to 7.5 ib/sec at 35 psig. Both

the cooling-air temperature and flow rate can be varied to obtain the desired cyclic
temperatures on the test liner.

The annular rig has six 5-in.-diameter viewports, three of which are spaced at

120 ° apart and are used to view the middle section of the test liner. The other

three, also spaced at 120 ° apart, are used to view the upstream portion of the liner

and its attachment piece. These windows are rotated 45 ° from the liner windows.

The quartz windows are air and water cooled. Through these windows television

cameras and the infrared camera are used to monitor and take temperature

measurements on the liner. There are also provisions for having 140 thecmocouples
on the test liner.

The dual loop programmable controller system, the ESCORT II data acquisition

system, and the infrared thermovision system, described previously for the bench-top

rig application, are the same systems used for the annular rig. However, a more

sophisticated lamp out detection system is used on the annular rig. It consists of
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an IBM PC AT and other equipment to monitor voltages and current to each of the

SCR's, as well as to the 16 lamp sectors. Results are displayed on the computer

screen, and if an upper or lower limit is exceeded, an alarm is sounded.

Annular Rig Test Results

A power versus time curve was determined that simulated an actual engine

mission thermal cycle on the test liner, a stacked-ring louver configuration

fabricated from Hastelloy-X and supplied by P&WA.. The power history for the

thermal cycle is shown in figure 7. The cyclic test conditions were a coolant flow

rate of 5.5 Ib/sec, a coolant flow temperature of 600 °F, a minimum power of 38

percent (actual), and a maximum power of 83 percent (actual). The total thermal

cycle time was 2.2 minutes. The time was broken up into a 6-see ramp up time from

minimum to maximum power, a 60-sec hold time at maximum power, a 6-sec ramp down

time. and a 60-sec hold time at minimum power. This power history was programmed

into the dual-loop programmable controller. The controller was run in the set-point

control mode.

Of the large quality thermocouple and IR temperature data base obtained, some

typical thermocouple data are shown in figures 8 and 9. The data shown are the hot

side and cool-side temperatures at maximum and minimum power. Figure I0 shows

transient temperature response at three locations on louver 5 of the liner. For the

6-sec ramp up in power there was about a 25-sec time required for the liner

temperature to reach equilibrium conditions, or about a 20-see lag between the time

to maximum power and stable peak liner temperatures. The 6-sec ram down-time

results in an almost mirror image of the ramp up in terms of time for the liner to

reach stable minimum temperatures. The ramp up and the ramp down times simulate the

ascent and descent phases of an engine mission cycle, and the hold time represents

cruise conditions, where the interaction of creep and plasticity occur

simultaneously. These temperatures are used in the heat-transfer/structural

analysis of the liner.

The infrared thermovision system is used to obtain a more detailed map of the

cool-side liner temperatures. Figure II is an example of the IR data obtained.

plotted are axial temperatures on the louver No. 4. Only the temperatures are shown

for the maximum and minimum powers at steady-state conditions of the thermal cycle.

Thermocouple data are also shown for comparison.With this system over 107

temperature measurements are obtained for each thermal cycle.

In addition to the temperature data obtained, dimensional measurements were made

on the original liner and at several points during testing. Photographs were also

taken which show the relative distortion of the liner as the test progressed. A

plot of the relative radial displacement measurements on louver 5 at 300, 742, and

1800 cycles is shown in figure 12. Obtaining a set of these measurements is tedious

and required several weeks of downtime for the test program. For this reason and to

add to the overall information, photographs were made of the louvers between runs.

A composite photograph of the inside louvers of the liner after 1031 cycles is

shown in figure 13. Very little distortion was evident and no cracks were found.

Because of the minimal distortion of the liner, it was decided to increase the

strain by increasing the maximum temperature reached in the test cycle. The maximum

power setting for the test cycle was increased from 83% to 87%. This raised the

overall thermocouple reading 70 to 1610 °F with one hot spot temperature jumping 180

to 1890 °F. As a result, the liner distortion was accelerated.
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After 1603 cycles a crack developed in the liner as shown in figure 14. This

crack occurred in a hot spot and was also in the vicinity of the weld on that

louver. The hot spot developed because of closure of several cooling holes as shown

in Figure 15. There was no thermocouple right at the hot spot but the maximum

temperature was at least 1720 °F and could have been over 1890 °F.

A composite photograph of the liner after 1782 cycles is shown in Figure 16.

This shows that most of the distortion occurs in louvers 4, 5, 6, and 7 in the I

80 ° and 270 ° views. The top (0°) and 90 ° views show much less distortion.

The effect of this distortion on the air flow through the liner can be seen in

figure 17. The distortion partially blocks the flow of air from the holes on the

exterior of the liner. This results in hot spots and the attendant distortion.

The test program on this liner was terminated after 1782 cycles because the

distortion of the louvers became severe enough to contact the frame of one of the

quartz lamp banks. Measurements of the crack from the initial observation at 1603

cycles to 1728 cycles indicated 2% increase in length.

The distortion of the louvers is not atypical of liners run in service. The

distortion shows some symmetry to the heat pattern of the lamps in that the peaks of

distortion are at the longitudinal center of a lamp bank where the maximum heat flux

occurred. It should be noted that a distortion peak was not formed at every bank of
lamps.

Of the 112 original quartz lamps, only a few remained after the testing.

Criteria for lamp replacement were excessive darkening of the glass envelope or

sagging filaments. Based on the cumulative failures to date, a statistical
analysis predicts a lamp half life of 65 hours.

TEST LINER ANALYSIS

The liner surface temperature measurements obtained from the thermocouples and

the infrared thermovision system were used first to obtain the film coefficients on

the cool and hot surfaces. Based on these coefficients, a heat-transfer analysis

was performed using MARC, a general-purpose, nonlinear, finite-element

heat-transfer and structural-analysis program. A two-dimensional, axisymmetric,

transient, heat-transfer analysis of the louver was performed. Eight-node,

heat-transfer finite elements were used in the analysis, and 107 elements and 522

nodes were used to model the louver. Comparisons between prediction and

experimental data shows good agreement at the maximum power level, but at the lower

power level the prediction was not quite as good.

The MARC program produces a tape which contains the temperature information The

temperatures (or thermal loads) are then input to the structural-analysis pro-

gram. The MARC program was also used to perform the structural analysis. A two-

dimensional axisymmetric transient structural analysis of the louver was performed.

Eight-node-structure finite elements were used in the analysis. The stress model

was identical to the heat-transfer model. Symmetric boundary conditions were

assumed at the ends of the louver. Walker's viscoplastic constitutive model was

used in the analysis. This viscoplastic model, and others like it, accounts for the

interaction between creep and plasticity, strain rate effects, time-independent and

time-dependent effects, and other effects critical to a combustor-liner analysis and
design.
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Figure 18 shows hysteresis loops of hoop stress versus hoop strain for three

locations on the liner: seam weld, lip, and knuckle. The data show a wide variation

in strains, strain ranges, strain rates, as well as stresses and stress ranges.

These data could be used to identify critical failure locations in a liner and

provide for better damage or fatigue/failure predictions.

CONCLUSIONS

The high temperature structures laboratory is operational. A large quality data

base on Hastelloy-X has been generated. The bench-top quartz lamp rig and the

annular quartz lamp rig are also operational. Tests of a conventional sheet metal

louver liner in the annular rig have been completed. Almost 1800 thermal cycles

were accumulated on the liner before liner testing was terminated due to gross

distortion on the liner. Liner temperatures were stable and repeatable not only for

each thermal cycle but from test to test. Observed liner distortion simulated very

well that of an in-service liner. By varying test conditions the distortion to the

liner was accelerated. Cracking on the liner occurred at a seam weld between 1500

and 1600 thermal cycles. The cracks on the liner did not grow appreciably during

the additional 200 or so thermal cycles. A large quality data base consisting of

measured liner temperatures and displacements has been obtained. The temperature

data obtained from thermocouples and the infrared camera are being analyzed and used

in a preliminary heat-transfer analysis of the liner. Preliminary nonlinear,

structural analyses are also being performed using as input the thermal loads

obtained from the thermal analyses. A UTRC laser specklegram system and a high

resolution camera system for measuring strain in a flat plate have been evaluated

using the bench-top rig. The data are being reduced and analyzed. Preliminary 2-D

thermal and nonlinear structural analyses of the test plate are being performed. In

conclusion, both the annular and bench-top quartz lamp rigs are viable tools for

high temperature cyclic structural testing of combustor liner segments and flat

plates.

FUTURE RESEARCH

An advanced segmented combustor liner is being instrumented with 140

thermocouples. Testing of this liner in the annular rig should begin by December.

Plans are also to test straight cylindrical specimens. Advanced, high-temperature

strain gages and a high resolution camera system will continue to be evaluated on

the bench-top rig. High-temperature torsional testing on a biaxial test machine is

scheduled to begin in early November. A three-dimensional thermal/structural

analysis of the conventional test liner will soon be underway.
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CREEP FATIGUE LIFE PREDICTION FOR ENGINE HOT SECTION
MATERIALS (ISOTROPIC) - FOURTH YEAR PROGRESS REVIEW*

Richard S. Nelson and John F. Schoendorf
United Technologies Corporation

Pratt & Whitney

INTRODUCTION

As gas turbine technology continues to advance, the need for advanced life pre-
diction methods for hot section components is becoming more and more evident. The
complex local strain and temperature histories at critical locations must be accu-
rately interpreted to account for the effects of various damage mechanisms (such as
fatigue, creep, and oxidation) and their possible interactions. As part of the
overall NASA HOST effort, this program is designed to investigate these fundamental
damage processes, identify modeling strategies, and develop practical models which
can be used to guide the early design and development of new engines and to increase
the durability of existing engines.

This contract has recently been modified to be a 6-year effort, comprising a
2-year base program and a 4-year option program. Two different isotropic materials
(BI9OO+Hf and INCO 718) will be utilized, along with two protective coating systems
(overlay and diffusion aluminide). The base program (ref. I), which was completed
during 1984, included comparison and evaluation of several popular high-temperature
life prediction approaches as applied to continuously cycled isothermal specimen
tests. The optional program, of which two years have been completed, is designed to
develop models which can account for complex cycles and loadings, such as thermo-
mechanical cycling, cumulative damage, multiaxial stress/strain states, and envi-
ronmental effects.

THERMOMECHANICAL MODEL DEVELOPMENT

A significant task under the optional program is the development of a damage
model which is valid under conditions of thermomechanical fatigue (TMF). A total of
32 uncoated and 9 NiCoCrAIY overlay coated TMF specimen tests have been completed
so far, covering variables such as strain range, temperature range, mean strain,
cycle type, and hold times. Some of the non-standard cycle types used (such as
elliptical and dogleg cycles) have demonstrated that TMF damage cannot always be
predicted in the same manner as isothermal tests; the chosen model must be sensitive
to accumulation of damage from several different sources throughout the cycle.

Six fully reversed TMF specimen tests have been completed at two nominal strain
ranges, using both in-phase and out-of-phase cycling. The temperature range was
538-871%. (I000-1600°F.), and the rate was 1 CPM. A plot of initiation |ife vs.
total mechanical strain range is shown in figure I, along with median life data from
isothermal baseline tests at the same cyclic rate. As expected, the TMF results are
lower in life than isothermal data from even the maximum cycle temperature. Note
also that the difference in life between in-phase and out-of-phase cycling is a
function of strain range; at lower strain ranges, the in-phase cycling produces
higher life, while at the higher levels, the out-of-phase life is higher. Obviously,
the number of data points in this set is limited, but this behavior has also been

*Work done under NASA Contract NAS3-23288
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noted during other TMF testing. This serves to emphasize the need to understand and

model the actual damage mechanisms active under these conditions; simple data cor-

relations based on one or the other cyc]e type may not always give conservative
predictions.

In order to provide insight into the relationship between mean strain and TMF
life, a series of 7 tests was completed using one-way strain cycling. Five of these
tests were run at R=O conditions, and two were run using R=-infinity. Figure 2 shows
a comparison between the results of the one-way tests and the fully reversed TMF
data for out-of-phase cycling. The ordering of the life curves follows the expected
trend, with the R=O tests producing the lowest lives and the R=-infinity being the
highest. However, as shown in figure 3, the R=O, in-phase tests showed no sig-
nificant difference relative to the fully reversed in-phase tests; in fact, they
appeared to be slightly higher in life. This may be due to inherent scatter in the
limited data set, or it may be caused by competing damage mechanisms.

The dogleg TMF test (rapid strain cycling at minimum or maximum temperature,
followed by strain hold in tension or compression during thermal cycling), was con-
ceived as an intermediate step between an isothermal hold test and a traditional TMF
test. Six specimens were tested using such cycles, and their initiation lives are
shown plotted on figure 4 along with comparable isothermal and TMF (in-phase and
out-of-phase) median test results. The dogleg tests with the hold in compression
("LC" & "HC") are about 2X higher in initiation life than the isothermal compression
hold tests. However, the lives from the tension hold dogleg tests ("LT" & "HT") are
nearly four times lower than those of similar isothermal tests. By using the median
lives from the in-phase and out-of-phase TMF tests, the solid trend line shown on

this figure can be drawn, and it is obviously opposite to what was found during the
isothermal testing. It is therefore clear that the non-isothermal hold has a signi-
ficant influence on specimen life, no doubt by activating different damage mech-
anisms as the temperature varieS.

Perhaps the most interesting results obtained so far under this task are those

from the elliptical cycle tests (strain and temperature are sinusoidal with time and

shifted in phase by +/-]35 degrees). Eight specimen tests were completed under this

series, including both clockwise (CW) and counterclockwise (CCW) cycles. The CCW

cycle is a good simulation of the strain-temperature history experienced by many
actual hot section components. A]though there are some components which have a CW

movement around their strain-temperature history, the CW cycle results are most

valuable when compared to the CCW results; the only apparent difference is the

direction of motion around the loop. Figure b shows a plot of the elliptical test

results, and it is clear that there is a large life difference between the two types
of cycles. Note that life prediction methods based solely on the extremes of the

cycle will not be able to predict this behavior, since they cannot distinguish be-

tween these two cycles. To account for such cycle dependent effects, an advanced

incremental form of the CDA life prediction model is under development which can be
integrated around any arbitrary strain-temperature history curve. This model is
undergoing evaluation and refinement at the present time.

MULTI-AXIAL STRESS STATE MODEL

Another of the optional tasks is the development anG verification of a multi-

axial stress state creep-fatigue life prediction model. A fatigue test program which
consists of 26 isothermal strain controlled tests uti]izing B1900+Hf thin-walled

tubular specimens is being conducted to provide crack initiation data. Four types
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of strain cycles are employed in the tests: simple tension, simple torsion, combined
tension-torsion in-phase (proportional loading) and combined tension-torsion 90°

out-of-phase (non-proportional loading). The torsion to tension strain ratio in the
combined strain tests is 1.5. The idealized strain paths in E- Y space for these

cycles are shown in figure 6. Two temperature levels, 871°C (1600°F) and 538°C

(lO00°F), and two frequency levels, lO CPM and l CPM, are being investigated to de-
termine their effect on the cracking behavior and possible changes in stress state

dependence. The variation in fatigue life with strain range is also being investi-

gated.

To date, a total of 16 multiaxial specimen tests have been completed. The

results are presented in Table I. The tensile test results are similar to those
obtained on solid cast uniaxial specimens tested in the base program. This demon-

strates the capability of producing consistent fatigue data with the multiaxial test

rig and specimen.

Multiaxial fatigue theories that relate to the physical damage processes have

shown promise. Therefore, the resultant physical damage has been studied closely by

monitoring fatigue crack initiation and growth during test through the use of
cellulose acetate surface replicas and by post-test fractographic analysis. These

observations indicate that for this material, multiaxial fatigue cracks initiate and

grow mainly on planes perpendicular to the maximum normal strain under all loading
conditions although some crack growth along maximum shear planes occurs at 538°C

(lO00°F). Therefore, a single parameter that is consistent with the cracking mode,
maximum normal strain, has been used to correlate the test results (figure 7). It

can be seen that there is considerable overall scatter in the two temperature

groupings of data, but the results for the four strain cycles are intermingled.
Other investigators (ref. 2) have consistently found out-of-phase tension-torsion

loading to be more damaging, especially with a 90° phase angle, than in-phase load-

ing. Damage from non-proportional loading may depend on a number of variables such
as material, temperature level and strain amplitude and, therefore, may be difficult

to characterize. Metallographic observations indicate that extensive rubbing of

opposing fracture surface features occurred during the 90 ° out-of-phase tension-
torsion tests; examinations of these specimens by SEM have not provided useful in-

formation concerning the crack initiation sites.

Trial data correlations have also been accomplished using other potential multi-

axial fatigue parameters such as equivalent strain, maximum shear strain and plastic

work per cycle (ref. 3) with limited success. None of the parameters produced an

acceptable correlation of the test data, due in part to their inability to properly
account for the pure torsion tests which resulted in significantly higher fatigue

lives. In addition, during the determination of the plastic work, the hysteresis

loops for Bl9OO+Hf exhibited little plasticity even for fatigue tests that resulted
in fairly low lives, as shown in figure 8. This situation caused plastic work

calculations to be very critical, and fatigue life assessment to be extremely

sensitive to small changes in experimental measurements or analytical calculations

of cycle plasticity.

Part of the scatter in the data is due to the low life of the in-phase tension-

torsion test of specimen 204 which may have been adversely affected by dross found
at the initiation site (figure 9). Subsequent to this discovery, an inspection

program was undertaken to screen 22 untested specimens using X-ray, fluorescent

penetrant and visual inspection procedures. Although indications of minor sub-

surface shrinkage were found in most of the specimens, no surface or subsurface
discontinuities were discovered that would disqualify these specimens.
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Work is continuing to complete the I0 remaining specimen tests. Additional
single and multiple parameters will be investigated to characterize the multiaxial
fatigue behavior.

CUMULATIVELOADINGMODEL

Work under this task has been completed during the past year, based on the
results of a total of 50 cumulative damagetests. These include block tests (one set
of conditions for the first block of cycles, followed by a second set of conditions
for the remainder), sequenced tests (alternating blocks of two different sets of
conditions), and interrupted tests (fatigue cycling interrupted by periods of tem-
perature exposure, either with or without load). The results of these tests show
that someconditions obey a linear damagerule, while certain other conditions show
a strong non-linear interaction. The non-linear damageaccumulation method and the
ductility fraction concept which were discussed at last year's workshop have been
incorporated into the formulation of the CDAmode] to account for the observed
interaction effects. It is expected that future refinements of these equations will
continue to be madeuntil the end of the optional program.

ENVIRONMENTALATTACKMODEL

An environmental creep-fatigue test program which consists of 27 tests utilizing
Bl9OO+Hfsolid smooth baseline fatigue specimens has been determined for this op-
tional task. Isothermal, fully reversed, strain controlled tests will be conducted
in inert argon, in oxygen at partial pressures typical of that encountered in the
engine hot section, and in laboratory air. The crack initiation results willbe used
to develop, evaluate and verify a model for prediction of environmental (oxidation)
effects on the creep -fatigue life.

Test results from previous tasks were reviewed to determine test conditions that
would activate the various damageprocesses, including oxidation. The program in-
corporates two temperature levels, 982°C (1800°F) and 871°C (1600°F), and two strain
rates, 1.67 x lO-3 sec-l and 1.67 x 10-4 sec-l. Testing will be done in two
stages: l) screening tests will be run to determine the alternative environment
(inert argon or pressurized oxygen) with the greatest effect, and 2) utilizing this
alternative environment in conjunction with laboratory air by varying the length and
order of exposure to demonstrate the effects of the environment at different stages
in the development of a fatigue crack.

A stainless steel, low pressure test chamber (figure lO) has been designed and
built to accommodatethe planned environmental tests. The chamber has been subjected
to an overpressure test which demonstrated its capability to withstand a maximum
pressure at least 2X greater than the working pressure of 5 atmospheres.

The initial environmental experiments are scheduled to begin shortly using a test
rig that is now being outfitted with the pressure chamber and other necessary ac-
cessories.

PROTECTIVECOATINGSMODELS

Under the modified version of this task, a total of 8 overlay coated specimens
will be tested. Twosuch tests have been completed using one-way strain cycling: one
at 1600°F and I0 CPM,and one at 1800°F and I CPM.The 1600°F test showeda signi-
ficant increase in initiation life whencomparedto similar tests on uncoated speci-
mens, but the separation life was essentially the same. However, the test which was
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run at 1800°F showed approximately a 3X increase in both initiation and separation

lives over the uncoated results.

CYCLIC MEAN STRESS MODEL

A total of 25 controlled mean stress tests are planned for this task, including

five under TMF conditions. Two of these TMF tests have been completed using load

control to achieve the desired mean stress. The mean stresses chosen were +30 and

+lO KSI, and the resulting mean strain histories of these specimens are shown in

figure If. It can be inferred that a significant amount of creep damage occurred

during these tests, and it is therefore not surprising that the lives were signifi-

cantly reduced relative to strain controlled testing (by a factor of 40X for the
+30 KSI test). The isothermal portion of this testing will be conducted at the

University of Rhode Island by Professor Ghonem.

ALTERNATE MATERIAL TESTING

A rolled ring forging of AMS 5663 (INCO 718) material has been obtained for use
in this portion of the program. A total of 70 isothermal tests (both monotonic and
fatigue), 20 TMF tests, and 15 multiaxial tests are currently planned as part of
this task. Machining of these specimens is well underway, and testing is scheduled
to begin in the last quarter of 1986.

FUTURE TASKS

Further work is continuing on all the above tasks, with a view to producing a

creep-fatigue model which is both practical and accurate. During the coming year,
the focus of the efforts is planned to shift from generation of test data to ana-

lytical model development activities• The generation of CDA model constants for
INCO 718 will be completed first, followed by additional refinement of the CDA life

prediction model.
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Specimen
Number

217

222

203

219

204

218

216

205

220

20l

221

209

223

202

214

215

TABLE I

MULTIAXIAL FATIGUE TEST RESULTS

1600 lO.0

1000

Phase Crack

&E AY _ Initiation Life*
_ eTD-e-_-.) (Cycles)

+0.250 0.0 - 1150

+0.200 0.0 - 14,600

0.0 +0.404 - 8100

0.0 +0.361 - 40,000

+0.185 +0.260 0 350

+0.147 +0.220 0 6900

+0.250 +0.375 90 1250

+_0.147 +0.220 90 ll,700

+0.338 0.0 - 1950

+0.260 0.0 - 4100

O.0 +0.675 - 1350

O.0 +0.500 - 20,1 O0

+0.255 +0.382 0 2200

+0.338 +0.506 90 240

+0.250 +0.375 90 61 O0

+0.338 +0.506 90 500l.O

*These lives are preliminary and subject to change as additional inspection
data become avail able.
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(a) Schematic diagram showing orientation of section

examined by SEM.

(b) SEM micrograph of longitudinal section at initiation

site showing oxide buildup on fracture surface as
well as in secondary crack.
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ELEVATED TEMPERATURE CRACK GROWTH*

S.N. Malik, R.H. Van Stone, K.S. Kim, J.H. Laflen
General Electric Company

INTRODUCTION

Critical gas turbine engine hot section components such as blades, vanes, and
combustor liners tend to develop minute cracks during the early stages of

operation. These cracks may then grow under conditions of fatigue and creep to
critical size. Current methods of predicting growth rates or critical crack sizes

are inadequate, which leaves only two extreme courses of action. The first is to

take an optimistic view with the attendant risk of an excessive number of service
failures. The second is to take a pessimistic view and accept an excessive number

of "rejections for cause" at considerable expense in parts and downtime. Clearly

is is very desirable to develop reliable methods of predicting crack growth rates
and critical crack sizes.

To develop such methods, it is necessary to relate the processes that control

crack growth in the immediate vicinity of the crack tip to parameters that can be

calculated from remote quantities, such as forces, stresses, or displacements. The

most likely parameters appear to be certain path-independent (PI) integrals,
several of which have already been proposed for application to high temperature

inelastic problems. A thorough analytical and experimental evaluation of these

parameters needs to be made which would include elevated temperature isothermal and
thermo-mechanical fatigue, both with and without thermal gradients.

Investigations of fatigue crack growth under elastic-plastlc condition should

consider the impact of crack closure on the appropriate crack growth model.

Analytically, this requires the use of gap elements in a nonlinear finite element

code to predict closure loads. Such predictions must be verified experimentally

through detailed measurements; the best method for measuring crack closure has not

been established in previous studies.

It is the purpose of this contract (NAS3-23940) to determine the ability of

currently available PI-integrals to correlate fatigue crack propagation under
conditions that simulate the engine combustor liner environment. The utility of

advanced fracture mechanics measurements will also be evaluated and determined

during the course of the program. These goals are to be accomplished through a

nine task, combined experimental and analytical program. To date, an appropriate

specimen design, a crack displacement measurement method, and boundary

* Work done under NASA Contract NAS3-23940.
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condition simulation in the computational model of the specimen has been achieved.
Computational verification of the path-independence of the proposed integrals has
been demonstrated for isothermal and thermal gradient cases. Also, the
experimental testing and data acquisition is continuing. Tensile and cyclic tests
were run at several strain-rates so that an appropriate constitutive model could be
developed. The experimental data include cyclic crack growth tests under
isothermal, thermo-mechanlcal, and thermal gradient conditions.

EXPERIMENTAL PROGRAM

Alloy 718, a y-y" nickel-base superalloy, has been selected as the analog
material for this program because over the temperature range from 800 to 1200°F, it

shows very large changes in creep behavior. This permits the use of Alloy 718 to

simulate the behavior of combustor liner materials while still performing

experiments at a relatively low temperature. Tensile, creep and cyclic

constitutive tests have been performed over the temperature range from 70 to

1200°F. Even though this material can experience large amounts of creep

deformation at the upper end of this temperature range, the tensile and cyclic

tests showed little evidence of strain rate sensitivity on constitutive response.

Figure 1 shows the resultant tensile stress strain curves determined for 70, 800,
and 1200°F. Tensile curves were also determined at 900, lO00 and llO0°F. These

curves were used during the analysis of the temperature gradient tests which are
described later in this paper.

The crack growth tests have been performed using a single edge notch (SEN)

specimen with buttonhead grips. The width and thickness of the gage section is 0.4

and O.l inch, respectively. Detailed descriptions of the specimen, testing

procedure and finite element analyses have been described previously Ill. The SEN

tests were performed in a strain control mode with the experimental setup shown
schematically in Figure 2. The controlling extensometer was mounted at the center

of the 0.4 inch wide surface of the specimen. The other two displacement gages,
one to monitor crack mouth opening displacement and one to monitor the back face

deflection, were also used. The controlling and back face extensometers had a gage
length of 0.5 inch and the crack mouth gage had a gage length of 0.03 inch. The

crack length was monitored using a DC potential drop technique. The hysteresis

loops from these tests Ill were open, indicative of large net section non-linear

deformation (i.e., plasticity and creep). Figure 3 shows the data from four

lO00°F, Ac=- crack growth rate tests - single tests at strain ranges of 0.5

and 1.7% and duplicate tests at 1.15% strain range. The initial EDM notch depth

was approximately O.Ol inch. Figure 3a shows the strong influence of strain range
on the crack growth behavior. The results from the duplicate 1.15% tests are very
similar. During these strain control tests, the maximum loads diminished as the

crack grew. Figures 3b and 3c show the lO00°F crack growth rates (da/dN) plotted

as a function of AK and Kma x, respectively. These data show that these tests

cover a range of conditions which can not be described by K, which is proportional

to the crack tip stress field in linear elastic fracture mechanics. Comparison of
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Figures 3b and 3c also shows that the crack growth rates are better described by

Kma x than AK. This suggests that when the final analysis of these tests is
completed, the adjustments for crack closure will describe the behavior over the

entire range of crack length.

Thermal gradient tests have been performed to evaluate the PI-integrals under
non-isothermal conditions. The thermal gradient was established using a

combination of induction heating and forced air cooling. At the front or cracked

surface, the crack mouth opening extensometer prevented the use of cooling air so

the crack was grown from the high temperature to the low temperature. Cooling air

was applied to the back face of the specimen above and below the extensometer with

cooling tubes and to the gage section with air forced through the cooling passages
in the extensometer probes. This gradient technique was originally developed on a

specimen which was monitored with fifteen thermocouples. Three sets of five
thermocouples were attached to the specimen along the crack plane and at planes
0.25 inch above and below the crack plane. The two latter locations correspond to

the positions where the arms of the two large gage length extensometers contact the

specimen. On all three planes, a thermocouple was located at each edge of the

specimen and at four equally spaced intervals. The presence of the thermocouples

prevented the attachment of the three extensometers, so the temperatures were
monitored along the plane of the crack in another specimen using an optical

pyrometer attached to a traveling microscope. The results of the temperature
measurements are shown in the Figure 4. The llne connecting the "X" symbols

represent the optical pyrometry measurements. These results show a small amount of

temperature difference from specimen-to-specimen and along the gage length. This

variation is within an acceptable range.

COMPUTATIONAL PROGRAM

Major computational accomplishment was the implementation, verification, and

applications of the selected PI-integrals to uniform and non-uniform thermal

gradients, and thermo-mechanical loadings for fracture mechanics analyses involving
nonlinear material stress/strain behavior. A critical review [2] of the available

Jx-integrals conducted under this program revealed that PI-integrals proposed by
Ainsworth (Je), Blackburn (J*), Kishimoto (J), and Atluri (Tp* and TO) are
suitable for nonlinear thermo-mechanical response. The relative advantages and

limitations of the various Jx-integrals for thermal gradient problems are
discussed in-depth in Reference [2]. The traditional Rice J-integral becomes

path-dependent and loses its physical significance for thermo-mechanical loadings

due to presence of the mechanical (rather than total) strain energy in its

formulation and, also, due to the absence of thermal strains contribution and

non-homogeneous (temperature dependent) material properties.

Verification of the implemented thermo-mechanical Jx-integrals was carried

out by prescribing a linear temperature gradient through the width of the SEN

(single edge notch) crack specimen which was gradually loaded with far-field
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uniform normal stress. The crack length to specimen width ratio (a/W) is 0.25 and

the specimen length to width ratio (L/W) is 1.2S. The specimen edge at crack face

was kept at 1200OF temperature and the back-face edge had a temperature of

lO00°F. All properties of the material were kept temperature dependent and, as

such, they varied through the specimen width. Therefore, the material properties
are non-homogeneous along the direction of thermal gradient.

Nonlinear, thermo-mechanical, finite element (FEM) analyses of the SEN specimen

were carried out for several values of the applied uniform stress, resulting in

thermo-elastic to thermo-elastic/plastic response. Figure S shows the far-fleld

normal displacement (Uy) variation which is linear in nature through the specimen

width for all the load cases considered. A significant amount of plastic yielding
is taking place ahead of the crack for the larger values of the applied stress as

seen in Figure 6 which shows the effective stress contours in the specimen. The

FEM analyses results were then used in the post-processor PI-integral computer code

to determine the various ix-integrals for several integration paths around the

crack tip. Table l shows a typical variation of the various Jx-lntegrals along

Four paths spanning extreme plasticity to pure elastic regions near the crack. It
could be seen that the Rice J-integral values are path dependent for the

thermo-mechanical load case. The other five Jx-integrals shown in Table l are

path-independent. A few of these thermo-mechanical PI-integrals are plotted in
Figure 7 for various applied normal stress values. These integrals show excellent

agreement with isothermal Elastic-Plastic Fracture Mechanics (EPFM) Handbook [3]
3nd Tada/Paris [4] analytical solutions for lower values of applied stresses. For

higher values of applied stress, the thermo-mechanical PI-integrals attain larger
values as compared to analytical isothermal J-integral. These results demonstrate

implementation and verification of the thermo-mechanical PI-integrals considered
here.

To minimize the finite boundary effects, the specimen L/W ratio used in
'verification analysis was 1.25. For the actual specimen, however, the L/W ratio is

only 0.78. Therefore, in order to investigate the influence of finite boundary on
ix-integrals, the same linear thermal gradient analysis was carried for the

actual specimen. Typical results as shown in Figure 8 indicate a maximum deviation
of 3% on PI-integrals for the prescribed applied stresses.

The actual thermal gradient developed in the SEN specimen gage-section can be

approximated as trilinear relationship, as shown in Figure g. It is approximately
constant at 1200OF for the First 0.175 inch along the specimen width; it then

linearly drops to lO50OF for the next 0.14 inch of the width; and, finally, it
,varies linearly to gOOOF in the remaining 0.08 inch of the width. Stress

_nalysis of the specimen with the measured temperature dependent material

properties and the prescribed trilinear thermal gradient was performed. An

interesting result was observed for the pure thermal gradient load case (zero

_oplied load/deflection). For an a/W ratio of 0.25, a crack mouth opening

:!_placement of 0.00015 inch was predicted. The corresponding far-field normal

displacement For pure thermal expansion load case is shown in Figure lO for two

OF _ _ALITY
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cross sections - one at y = 0.31 inch (end of gage length), and the other at y =
0.25 inch (location of extensometer probes). These free-thermal-expansion normal
displacements vary nonltnearly, through the specimen width, due to a combination of
the temperature dependent material properties and the trtltnear thermal gradient.
It has been shown previously that the far-field mechanical displacement in the
specimen varies ltnearly along the specimen width at the end of gage-section.
Figure 11 shows the normal stress variation ahead of the crack-tip for the pure
thermal gradient load case. The normal stress has a value of 20 kst near the
crack-tlp and it drops sharply to -8 ksl at x = 0.175 inch and then gradually
increases to 12 kst by the end of the specimen width. This normal thermal stress
is self-equilibrating in nature since there is no mechanical load applted. This
fact is further elaborated in Figure 12 which shows the contour plots of the normal
stress in the entire gage-section of the specimen. It could be seen that at the
top surface (end of the gage-length) the normal stress is zero along entire width
of the specimen. The whole specimen is in elastic state of stress with a maximum
effective stress of 35 kst. Since there exists a crack-tip stress fteld in the
specimen for the measure_lthermal gradient load case, the various ix-integrals
were determined and found to be path-lndependent. The average value of these
P[-tntegrals was 1.16 lbs/tnch, which is equivalent to 5 ksi_in thermal-K I
value.

Stress analyses were further carried out by prescribing uniform normal stresses

superimposed on the actual specimen with the measured thermal gradient. Figure 13
shows the variation of the thermo-mechanical 3x-integrals with applied stress.

It could be seen that the values of these integrals are very close to each other

for lower values of the applied stress with very little plasticity in the

specimen. When the level of plasticity increases, then the various PI-integrals
have somewhat different values but remain path-independent.

CONCLUDING REMARKS

The analyses conducted for thermo-mechanical PI-integrals have been very

successful and compare very well with the available results. Work is now in

progress For computational simulation of the measured load-displacement plots for
Lne thermo-mechanical response of the specimen. In addition, computations are also

to be performed for reversed plastic loading to simulate crack-closure. These
results will be compared with crack growth experimental measurements to identify

path-independent integrals which can predict cyclic crack growth behavior under

isothermal, TMF, and thermo-mechanical loading conditions.
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LIFE PREDICTION AND CONSTITUTIVE MODELS FOR ENGINE HOT SECTION

ANISOTROPIC MATERIALS PROGRAM*

G.A. Swanson, T.G. Meyer, and D.M. Nissley

United Technologies Corp.

Pratt & Whitney

INTRODUCTION

The purpose of this program is to develop life prediction models for coated

anisotropic materials used in gas turbine airfoils. In the program, two single

crystal alloys and two coatings are being tested. These include PWA 1480, Alloy
185, overlay coating (PWA 286), and aluminide coating (PWA 273). Constitutive

models are also being developed for these materials to predict the time independent

(plastic) and time dependent (creep) strain histories of the materials in the lab
tests and for actual design conditions. This nonlinear material behavior is

particularly important for high temperature gas turbine applications and is basic to
any life prediction system. This report will highlight some of the accomplishments

of the program this year.

SINGLE CRYSTAL CONSTITUTIVE MODEL

Two separate unified constitutive models for single crystal PWA 1480 have been
formulated and are in the final stages of development. The first model, the

'microscopic model", computes the inelastic quantities on the crystallographic slip

systems. This model achieves the required directional properties as a consequence
of resolving the summed slip system stresses and strains onto the global coordinate

system. The second model, the "macroscopic model", uses global stresses and strains
directly and employs anisotropic tensors operating on global inelastic quantities to

achieve the required directional properties. The two models offer a trade between

accuracy and physical significance and computing time requirements. The microscopic
_odel is more accurate and is more physically significant in its formulation than

t!_emacroscopic model. However the macroscopic model is more computationally

efficient, because integration of the evolutionary equations is required only for

the six global stress/strain quantities rather than for each of the slip systems.

Cyclic stress/strain data at 871C (160OF) will be used to illustrate the behavior of
the models. Figures l and 2 show test data from uniaxial bars oriented in three

:rystal directions: <OOl>, <Ill >, and <Oil >. These three orientations represent the
_treme ends of the possible crystal orientations.

.'ork performed under NASA contract NAS3-23939.
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The tests were conducted under controlled strain rates ranging from 0.001% per
second to 1.0% per second.

The microscopic model models deformation on both the octahedral slip systems and the

cube slip systems. The importance of including both slip systems can be shown by
examining the results of inactivating the cube system terms. The model, thus

_odified, was fit to the <OOl> data and subsequently used to predict the<Ill>

behavior. Figure 3 shows the correlation with the <OOl> data is quite good, but the
prediction for the <Ill> data is poor. The good correlation with the <OOl > data

could have been expected since for a tensile bar in this orientation, only the
octahedral slip systems have nonzero resolved shear stresses. The resolved shear

stress on the cube slip systems is zero for this orientation. In contrast, a
tensile bar oriented in the <Ill> direction has nonzero shear stresses on both the

octahedral and the cube slip systems. When cube slip terms are included in the

7odel, the correlation with the <Ill> and <OOl> data is quite good as seen in Figure
4. The model constants in this case have been determined to best fit both the <OOl>

and the <Ill> data. The accuracy of the full model is illustrated in Figure 5 by a

prediction of data from a third orientation: the <Oil> orientation. Comparison with
the test data in Figure 2 shows the prediction is very good. The maximum difference

seen between the micro model and test data for all three orientations, for stress

ranges up to 2]00 MPa (305 ksi) and over three orders of magnitude of strain rate is
less than 62 MPa (9 ksi).

In the macroscopic model being developed, a single set of evolutionary equations are

written using the global stresses and strains directly (i.e. not resolving them onto

slip systems). The orientation dependence is achieved by including anisotropic
tensors in the evolutionary equations for both inelastic strain and back stress. If

the anistropic tensor is included only in the equation for inelastic strain, the
best correlation with <OOl> and<Ill> data resulted in a maximum stress error 2.5

times that achieved in the slip system based model. However, as shown in Figure 6,

when the back stress components are allowed to evolve anisotropically, correlation

of the <OOl> and <Ill> test data is comparable to that achieved with the slip system

based model. The ability of the macroscopic model to predict other orientations is

currently under investigation.

COATING CONSTITUTIVE MODEL

Five isotropic constitutive models were evaluated based on ability to correlate

isothermal overlay coating behavior during stress relaxation and ability to predict

thermomechanical behavior. The models evaluated were a classical formulation (e.g.

Ref.l), Walker's isotropic formulation (Ref.2), a simplified form of Walker's

isotropic formulation where back stress was assumed equal to zero, the Stowell model

iRef.3), and Moreno's Simplified Unified Approach (Ref.4).

-_-_rlyevaluation of model correlation ability indicated little differences between

-.he.nodels. Additional isothermal cyclic stress relaxation tests were subsequently

conducted to determine whether kinematic terms were necessary. To accomplish this,

5 minute strain hold initiating at zero stress after unloading was incorporated

into the test history. Experimental results from the test conducted at 649C (120OF)

is presented in Figure 7. The positive relaxation observed during the 5 minute

strain hold indicated that kinematic hardening was necessary to accurately represent

the overlay coating response. As such, the 3 models which do not contain kinematic

:_r_Jening formulations (i.e. classical, simplified Walker, and Stowell) were dropped
from consideration.
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Correlation of the isothermal stress relaxation information was best accomplished

using the Walker model. The Moreno model as applied was generally unable to
correlate the observed positive relaxation response largely as a result of the

assumed back stress evolution equation:

_: Ep_ _in + _in_Ep

where: _= back stress increment

Ep = strain hardening slope in uniaxial tensile test
__cin = inelastic strain
-_in = inelastic strain increment

Ep = change in Ep (with respect to temperature)

Moreno in his work on Hastelloy X (Ref.4) utilized a less rigorous back stress

formulation which relied on a set of rules. This was considered cumbersome and,

hence, the above formulation was adopted.

Prediction of an out-of-phase overlay coating hysteresis loop by the Walker and

_reno models is presented in Figure 8. Clearly, the Walker model is the more

accurate, but the Simplified Unified Approach does predict the gross behavior and is

also quite easy to apply, since only simple hand calculations are required.

Aluminide diffusion coating isothermal stress relaxation tests are in process.

Because diffusion coatings depend largely on the substrate material, tests are

conducted on 2 thicknesses of PWA 1480 material .13 and .25 mm (.005" and .OlO").

Initially, the overlay constitutive model (i.e. Walker) will be applied to both
thicknesses and each material constant will then be plotted vs. PWA 1480 thickness

_nd extrapolated to zero PWA 1480 thickness to obtain the "effective" coating

material constants.

LIFE PREDICTION TESTS

Tests concentrated on gaining insight to coating/PWA 1480 substrate interactions

during thermomechanical loading conditions. Critical fatigue experiments conducted
on <OOl> and <Ill> PWA 1480 specimens with either overlay or aluminide coatings have

_hown that thermomechanical fatigue life is significantly influenced by the presence

of a coating, coating structure (overlay or diffusion), substrate orientation, and

strain-temperature-time path. Test results supporting these conclusions are

presented in Figures 9 through 12. All lives are relative to specimen separation
life, except in Figure 12 where coating cracking lives are also provided. Although

not shown, coating cracking lives generally follow the same trends. Isothermal

Fatigue tests were primarily limited to overlay coated <OOl> PWA 1480 and were

designed to provide initial life data for exercising life models. This particular

coating/substrate orientation combination was chosen because it is the most
_nderstood from previous experience and material behavior standpoints.

The remainder of specimen coating/substrate orientation combinations are intended to

obtain anisotropy and coating structure effects.

LIFE PREDICTION MODELS

_ed on observed specimen cracking lives obtained from multiple acetate

replications of each specimen, life must be separated into coating and substrate
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components such as provided in the following equation:

Nsep = Nci + Nsi + Nsp

where: Nci = _umber of cycles to generate a crack through the
coating.

Nsi = Additional cycles for coating crack to penetrate a

small distance into the substrate. Initially
defined as .13 mm (.005").

Nsp : Additional cycles to grow crack to critical size.

Nsep = Specimen separation life (50% stress range drop).

Initially, simple correlations of overlay coating cracking life (Nci) were

considered: Coffin-Manson, Ostergren, actual tensile hysteresis energy, and another

hysteretic energy approach based upon the concept of effective temperature (Ref.5).

In the latter approach, effective temperature was assumed to be the midcycle
temperature of the loading condition (i.e. (Tmin+Tmax)/2). These four correlations

are presented in Figure 13. In each case, the overlay coating correlating
parameters were determined by analysis using a one-dimensional 2-bar mechanism. The

correlation lines shown in the figure represent a "hand-fit" curve passing through
_]l the out-of-phase TM: test conditions and are intended to serve as a reference to

qualitatively judge the correlations. Of the four, the tensile hysteretic energy
model is best able to correlate the lives of the varied test conditions.

P_A 1480 substrate life modeling depends upon what is considered crack initiation

vs. propagation. The methodology applied in this program initially defines
substrate crack initiation as a crack which has penetrated .13 mm (.005") into the

P'VA 1480. Assuming a penny-shaped crack, this is consistent with a .15 to .25 mm
(.006" to .OlO") surface crack. To verify the relationship between acetate replica

observations and actual substrate cracking, substantial optical and Scanning

Electron Microscopy (SEM) fractography has been conducted. Such investigations have

indicated that overlay coating cracks do not penetrate into the PWA 1480 substrate

_uring tests conducted at high temperature. Figure 14 is a schematic of the

_emarkation between temperatures where coating cracks do or do not penetrate into
the PWA 1480.

[MF of a coated specimen (or component) is particularly complex because thermal

growth mismatch between coating and substrate introduce biaxial stresses and strains
_uring thermal cycling. Final model(s) will consider such biaxial conditions and

lore rigorous statistical evaluations of the model(s) will then be performed.

FUTURE

I_ the coming year, additional cyclic tests are planned to assist in life prediction

_,]Jeldevelopment. Also, in Option l of the program, life model development will be

__tended to airfoil root attachment temperatures, stress levels, and notch stress
concentrations.
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AUTOMATION SOFTWARE FOR A MATERIALS TESTING LABORATORY

Michael A. McGaw and Peter J. Bonacuse

NASA Lewis Research Center

Cleveland, Ohio 44135

A comprehensive software system for automating much of the experimental process

has recently been completed at the Lewis Research Center's high-temperature fatigue

and structures laboratory. The system was designed to support experiment definition

and conduct, results analysis and archiving, and report generation activities. This

was accomplished through the design and construction of several software systems, as

well as through the use of several con_aercially available software products, all

operating on a local, distributed minicomputer system (fig. I). Experimental

capabilities currently supported in an automated fashion include both .isothermal and

thermomechanical fatigue and deformation testing capabilities. The future growth

and expansion of this system will be directed toward providing multiaxial test

control, enhanced thermomechanical test control, and higher test frequency (hundreds

of hertz).

Research Project Model

A model of a typical research project was developed by examining the process

used by researchers in the course of conducting materials behavior research (fig.

2). The principal emphasis of the automation effort at the Lewis Research Center

has been on supporting the formulation and conduct of experiments, the analysis of

the resulting data, and the reporting of research progress.

Hypothesis foznnulation is an intensely creative (human) process and therefore

is not easily subjectable to automation. Whether this will remain t_ue in the

future is a topic of fervent debate and will not be discussed here, save to say that

automation tools can do much to support this creative process. An identical

statement can be made for the conclusion formulation process.

Experiment Formulation and Conduct

A basic model of this process is given in figure 3. The researcher, attempting

to prove a hypothesis, first formulates an experiment or set of experiments. Having

a suitable description (generally symbolic in nature), a parametrization is made to

fix the precise nature of the tests desired. In this way all control, parameters and

measurement variables are defined, as well as their strategies. At this point these

requirements must be translated into the form of a computer program in order that

the desired test can be executed. Generally, this has meant the creation of unique

programs, a consequence we are seeking to minimize.

Our present capabilities consist of a very general uniaxial, isothermal

test-creation and contcol capability, as well as a number of unique programs for

conducting the_momechanical tests. The unique programs are generated in the usual



sense; the general development process and supporting tools are described in figures

4 and 5. A program is developed and tested (to the maximum extent possible) on the

host processor, where a full complement of tools are present to support such
activities.

When the requirements of an experiment fall within the uniaxial, isothermal

test catagory, an automated process is used. A set of conmmnd waveforml and data

acquisition requirements are generally related: a materials test conmmnd waveform

and data acquisition requirement can always be decomposed into "blocks" where

certain sequences of conmmnd and data acquisition are fixed in relation to one

another and usually repeated as a block for a finite number of intecations. These

"blocks" differ from one to another based on changing data acquisition needs,

control mode differences, conmmnd waveform differences, or a combination of these.

At times, these blocks are concatenated, forming yet another "block". Because of

this, a capability to nest a series of "blocks" exists. These test control

requirements are implemented through the creation of a "control tree", an ordered

path connecting elements, or nodes, of operations. There are five types of nodes,

each possessing a set of usage rules for implementing its functions. A typical

test, the constant-amplitude strain-controlled fatigue test, and its control tree

are given in figure 6. As can be seen, node types exist for expressing repetition,

command waveform character, and data acquisition parameters and strategies. This

structure effectively provides for the creation of virtually any kind of test - it

is adaptable to include other capabilities as well. In fact, the extensions of

multiaxial test control, computed variable control and thet'momechanical test control

were incorporated into the basic data structure and program design and will be

implemented in the future.

Once the control tree is generated, the actual experiment can be conducted.

This is accomplished through a program which interprets the control tree and effects

the operations called for. This multitasked and interrupt-driven program performs

in real-time. The interface provides for the usual controls during execution:

be_in the test, pause, resume, status request, and abort. At this time, it is not

possible to alter either the tree structure nor node (test) parameters dynamically

other than through the aforementioned interface. This capability is latent in the

basic design, however, and will be implemented in the future. A number of proErams

(an environment) support the creation and execution of tests using the control-tree

approach (fig. 7). Support functions include capabilities to:

(a) Uniquely describe a given uniaxial materials testing system in terms

of transducer complement, calibration data, etc.

(b) Create control trees from parametric descriptions of desired tests.

(c) Conduct materials tests from control trees previously generated.

(d) Produce formatted test reports from the data acquired during the

execution of an actual test.

(e) Provide interface mappings between a given computer system and a

given servohydraulic testing system.

(f) Provide general conmm/nications capabilities among the lab computer

systems, including file transfer and virtual interface capabilities.

A more complete description of this environment as well as a thorough discussion of

the control-tree concept will appear in a future paper.
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K basic model of this process is given in figure 8. The usual procedure for

analyzing experimental test results involves organizing the primative data, deciding

how to analyze the results (task definition), and generating (unique) programs for

the analysis. This procedure is quite lengthy and cumbersome, especially within the

context of software available to automate much, if not all of this process. We have

elected to use comm%ercially available software systems for this portion of the

research process; our choice of software includes a relational data base management

system (residing on the host processor), and an integrated

8raphics/statistics/modeling program (residing on personal computers). Key features

of these systems are shown in figures 9 and I0.

The manner in which these system are used in our laboratory is characterized by

two separate environments: the relational DBMS resides on the host computer system

and is the primary organizing and archiving system. Data acquired in the laboratory

are loaded into this system after each experiment (or set of experiments). The

interactive analysis system, residing on personal computers distributed throughout

the building, accesses the data through the DBMS (all systems are networked over the

Lewis CATV local area network). The user need not physically handle the data at all

- electronic transfer of compatible data files throughout the laboratory computer

system is possible. We have found this environment to be both powerful and

efficient.

The final portion of the analysis process is reporting. For this function, we

are using a variety of work processing and text editing programs: each individual

is using his or her choice. The fundamental characteristic of this process,

however, is the ability of these programs to exchange text files with the

secretarial word processing systems.

CONCLUSION

The system in use for conducting research at the Lewis Research Center's high

temperature fatigue and structures laboratory has been described. Those areas of

the research process that could be automated in an effective manner through the use

of commercially available software systems were. For those areas not effectively

automated through commercially available systems, custom systems were developed. A

key characteristic of the test conduct portion of the described system is the notion

of a control tree, the principal means of describing and executing materials tests

under computer control. The environment supporting the creation and execution of

control trees was described. Finally, future extensions planned for enhanced

control capability were described.
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Grain Boundary Oxidation

and Its Effects on

High Temperature Fatigue Life*

H.W. Liu and Yoshiki Oshida

Department of Mechanical and Aerospace Engineering

Syracuse University

INTRODUCTION

Fatigue lives at elevated temperatures are often shortened by creep and/or

oxidation. Creep causes grain boundary void nucleation and grain boundary

cavitation. Grain boundary voids and cavities will accelerate fatigue crack

nucleation and propagation, and thereby shorten fatigue life.

Gibb's free energies of metal oxide formation are negative. No metal or alloy is

3table when exposed to an oxidizing environment. Grain boundary is a path of rapid

diffusion. Therefore, grain boundary oxidation rate is higher and grain boundary

oxide penetration is deeper. Oxide is brittle and fractures easily when a tensile

stress is applied. Grain boundary oxide crack may serve as a nucleus of a fatigue

crack and the crack nucleus will grow by the subsequent cyclic fatigue load.

Therefore, grain boundary may shorten fatigue crack nucleation life. Oxidation also

accelerates fatigue crack propagation. Hence, grain boundary oxidation will shorten

fatigue lives at elevated temperatures.

Both oxidation and creep have been shown as possible mechanisms for high

_emperature fatigue damage. Grain boundary void formation and cavitation are the

result of surface diffusion and/or grain boundary vacancy diffusion, while grain

boundary oxidation is primarily caused by the diffusion of oxygen. The kinetics of

the diffusions of vacancies and oxygen atoms is shown schematically in Figure (I) .

One mechanism dominates in the high temperature region and the other dominates in the

low temperature region. Therefore, the question is not which one of these two

mechanisms causes high temperature fatigue damage. The problem is to define the

lifferent regions dominated by these two different mechanisms.

The functional relationships between the damage rate of fatigue _rack nucleation

and propagation and the kinetic process of oxygen diffusion depend on the detailed

ohy3ical processes. In this study, the kinetics of grain boundary oxidation

penetration was invetigated. The statistical distribution of grain boundary

_enetration depth was analyzed. Its effect on high temperature fatigue life will be

ii53cussed. A model of intermittent micro-ruptures of grain boundary oxide was

prcposed for high temperature fatigue crack growth. The details of these studies are

=e_crted in references 1 and 2.

Work lone under NASA Grant NAG3-348

407



GRAINBOUNDARYOXIDATIONKINETICSANDITS
EFFECTSONFATIGUECRACKNUCLEATION

Cylindrical coupons of a nickel-base superalloy (TAZ-8A) were subjected to
_xidation in air under the stress-free condition. The oxidized disk coupons were
sectioned, each sectioned surface was examined under an optical microscope, and the

maximum grain boundary oxide penetration depth, ami of the ith section was measuzed.

Then a thin layer of coupon approximately 80_m was removed. Then the new surface was

polished, and another ami of the new surface was measured. This process was repeated

12 times for each test coupon to collect enough data for the statistical analysis

Couling and Smoluchowski (ref. 3) and Turnbal and Hoffman (ref. 4) have found that

7rain boundary diffusion penetration is a function of the angle of (i00) tilt

_cundaries. Therefore, it is expected that the grain boundary oxide penetration

!epth, am, is not uniform. It varies from one grain boundary to another. Figure 2

shows the Weibull plot of 480 data points for oxidation at 800°C for 500 hours. The

data fits the Weibull distribution function very well.

E oxp[ amiau b]aoexp[ amiaub] a(i)

?(ami) is the probability of finding an oxide depth less than ami on a sectioned

surface. The probability of finding a depth equal to or deeper than ami _

[i - P(ami) ] . For the data in Figure 2, b = 2.0, a u = 40_m, and a o = 31 _m.

Grain boundary diffusion is several orders of magnitude faster than bulk

!iffusion. If the flux due to bulk diffusion is neglected, grain boundary diffusion

can be considered a channeled one-dimensional flow. With a constant oxygen

=oncentration C o at the "entrance" of the grain boundary, the oxygen concentration in

the boundary is

C(x, t) = C o [i - erf( ,x--_--- )] (2)

2_Dgbt

where err is the error function, Dg b is the grain boundary diffusion coefficlent.

"Bulk" oxide will be formed when the oxygen concentration reaches a certain critical

value, C c. According to Equation (2),

x C

C c = C O [i - erf(2--_t) ] (3)

x c is the depth of the oxide penetration, where C = C o . According to Equation (3),

the quantity (Xc/Dgbt) must be a constant, and x c must be proportional to _Dgbt

therefore, the grain boundary oxide penetration must be proportional to _t.

However, the model does not take the bulk diffusion and the chemical process

into _onsideration. Perhaps it is reasonable to assume that ami is proportional to

_Dgbt)n Therefore ami must have the form

Dr

ami Dgbt

B B
<4a)

nAH n _Tami = C_i t n exp (- R-T-- ) = (_i t exp(- ) (4b)

is _he magnitude of the diffusion jumping vector or interatomic spacing.
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The grain boundary oxide penetration depths were measured at the oxidation

temperatures of 600, 800, and 1000°C at the exposure time from 100 to 1000 hours.

The regression analysis of the data gives the following empirical relation

ami(Cm) = 1.34 x 10 -3 t 0-25 exp(-4.26/RT) (5)

where t is in seconds, the activation energy in kcal/mol, and T in OK. The

coefficient of auto-correlation is 0.96.

Assume the relation between ami, t, and T is deterministic. The deviation of

each measured penetration depth from the empirical relation can be lumped into the

term _i in Equation (4b) .

_i = ami t-n exp(Q)
(6)

At any temperature T and exposure time t, with the measure ami known, the value of Qi

can be calculated from Equation (6). The data of 144 values of _i fit well the

Weibull distribution function as shown in Figure (3).

b
- _u b (Q - _u)

] (7)
[I - Pi(_)] = exp [- (--_----) ] = exp [- qQ

Pi(Q) is the probability of finding an Q-value less than Q. The value of b, au, _o

are 1.85, 0.53 x 10 -3 and 0.51 x 10 -3 respectively.

The maximum _-value along the periphery of the i'th sectioned surface can be

considered as the Qi-value of an exposed area of _d of a test coupon. 6 is the

coupon diameter and d is the grain size. Another sectioned surface at a distance one

grain diameter away contains an entirely different set of grain boundaries and it is

another independent sample.

If Ps(Q) is the probability of finding an Q-value less than Q on an exposed area

s. P3(_) is related to Pi (Q)

[I - Ps(Q)] = [i - Pi(_)] s/Ksd (8)

The value of Ps(_) might be taken as the value of Ps(a), the probability of

finding a penetration depth less than a on an exposed surface area s. Therefore the

data measured from the test coupons can be used to extrapolate to a much larger

surface area of an engineering component.

Oxide is brittle and fractures easily under a tensile stress. Once an oxide crack

is formed, the crack will continue to grow under a cyclic fatigue load. The oxide

:rack can be considered as a precrack. The remaining fatigue life, Nfa ° of a

orecracked specimen or a precracked engineering component is a function of the

precrack size, a O

Nfao = f(ao ) (9)

-_= orcbability of having fatigue life N= a is also the probability of having an

_xi/e crack size a o. Therefore, the statistical scatter of the fatigue lives at

elevated temperatures may reflect the scatter of the oxide penetration depth.
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A fatigue crack is often nucleated by cyclic plastic deformation. This

nucleation mechanism is cylcle dependent. The damage mechanism by oxide crack

formation is time dependent. Therefore, for a very low cyclic frequency, the oxide

.:rack formation may preceed the fatigue crack nucleation by the cyclic plastic

formation process. Thus the fatigue nucleation life (in terms of number of load

cycles) might be shortened. Perhaps, the shortened fatigue life at elevated

temperatures and the wide scatter of the fatigue life of engineering components are

caused by grain boundary oxidation.

THE INTERMITTENT MICRO-RUPTURE MODEL FOR HIGH TEMPERATURE FATIGUE CRACK GROWTH

Figure (4) shows the frequency effect on fatigue crack growth rate for a number

of high temperature alloys. For each data set, both AK and test temperature were

maintained constant.

In the low frequency region, the fatigue crack growth rate, da/dN, of Inc0nel

718, inconel X-750, Astroloy at 700 and 760°C, and Cr-Mo steels, are inversely

proportional to frequency, V. The time rates of the fatigue crack growth, da/dt =

(da/cb_) (!/v) are constant. In this region, the fatigue crack growth is

intergranular.

For constant-K tests at elevated temperatures, two crack growth features are

common: (i) the time rate of crack growth is constant, (i.e. da/dt = constant) and

(ii) crack growth is intergranular. Crack growth at constant-K is often referred to

as creep crack growth. Fatigue crack growth in the low frequency region has these

two same features. Therefore, fatigue crack growth in the low frequency region

is cften referred to as creep crack growth.

One question can be raised. Do the inverse relation between da/dN and v and the

intergranular crack growth preclude grain boundary oxidation as the underlying cause

of the accelerated fatigue crack growth at elevated temperatures? In this section, a

fatigue crack growth model, based on the fracture of grain boundary oxide, will be

constructed. The model agrees with the inverse relation between da/dN and v. The

fracture path following the grain boundary oxide, is intergranular.

in Figure (4), the cyclic loading patterns are also shown. For Inconel 718 and

Astroloy at 760°C, a hold time, _t H at Kma x was applied. For Inconel X-750, Cr-Mo

steels, and Astroloy at 700°C, a triangular loading pattern was used. The crack

growth with a hold time will be analyzed first.

The oxygen arriving at a crack tip will have to diffuse into the region ahead of

_he crack tip in order to form oxide along the grain boundary. When the crack tip

jr_in boundary oxide reaches a critical size, 6a, the oxide will rupture and the

wrack will grow by the amount, _a. The critical size, 6a, depends on the K-level

Juring the hold time. Once the crack tip advances to its new position, this process

3f grain boundary diffusion, grain boundary oxidation, and the micro-rupture of the

_rain boundary oxide will be repeated again. This process of micro-rupture of crack

_ip grain boundary oxide can reoccur intermittently many times during a fatigue

_ycle.

During At H at Kmax, many micro-ruptures will take place. After each micro-

culture, the penetration of grain boundary oxide will have to start all over again
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from "time" zero.

size _a is

_t = (B/Dg b) (_a/_B) i/n

The number of micro-ruptures during At H is

m = AtH/_t = (At H Dgb/B)(_B/_a)I/n

m is linearly proportional to At H and is inversely proportional to v.

ORIGINAL .V':_c.-,__iS

OF POOR QUALITY

Therefore, the time interval, _t necessary to reach the critical

(I0)

(Ii)

Fatigue crack growth per cycle is the sum of the micro-ruptures during At H.

d__aa= m6a (12)

dN

From Equations (10, ii, and 12), we obtain

da = _,_t H Dg b (B/_a) (l-n)/n = 9' (Dgb/V) (B/_a) (l-n)/n (13)

da/dN is inversely proportional to V. For n=0.25, da/dN is inversely proportional to

_a 3. Fatigue crack growth rate increases rapidly as _a becomes small. _a is smaller

if the oxide is more brittle, if the flow stress of the material is higher, and if

the crack tip stresses are in the state of plane strain.

Figure (5) shows the triangular loading patterns of two different frequencies.

The time interval At i at K i is inversely proportional to v. We treat At i as the hold

time at K i. If the crack tip fields at K i are the same at both of these two

frequencies, the number of micro-ruptures during _t i is linearly proportional to _t i

and is inversely proportional to v. This must be true at every Ki-level. Fatigue

crack growth is the sum of all of the micro-ruptures at all the Ki-levels during one

fatigue cycle. Therefore da/dN is inversely proportional to V. Fatigue crack growth

follows the path of grain boundary oxide, therefore, it is intergranular.

We have shown grain boundary oxidation as a possible mechanism of high

temperature damage that shortens fatigue life. Our work is only one of the many

steps toward the construction of a quantitative model based on the physical damage

processes caused by oxidation.

Only after the quantitative models of the physical processes of fatigue damage

due to creep and oxidation are completed, we will be able to predict high temperature

fatigue life accurately and with confidence. The quantitative relations between the

liffusion rates of vacancies and oxygen, the rate of oxide rupture, the rate of

nucleation and growth of voids and cavities, and the rate of fatigue damage have not

yet been established.

without a clear understanding of the underlying physical prbcesses for the

cbserved fatigue behaviors, it is difficult and unsafe to extrapolate a limited

amount of experimental data for fatigue life predictions. For example, to

extrapolate the crack growth rate in Figure (4), from the low frequency region into

_ne high frequency region or vise versa will underestimate the growth rate.

Therefore it is unsafe.
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I. INTRODUCTION

The present investigation deals with a plasma-sprayed thermal barrier coating
(TBC) intended for high temperature applications to advanced gas turbine blades.

Typically, this type of coating system consists of a zirconia-yttria ceramic layer
with a nickel-chraniun-aluninum bond coat on a superalloy substrate. The problem

on hand is a complex one due to the fact that bond coat oxidation and thermal

mismatch occur in the TBC, as reported in reference I. Cracking in the TBC has

also been experimentally illustrated in the same reference.

The purpose of this investigation is to help achieve a clearer understanding
of the mechanical behavior of the TBC. The near-term objective is to study the

stress states in a model thermal barrier coating as it cools down in air.

In this investigation, the powerful finite elerent method has been utilized

to model a coated cylindrical specimen. Four successively refined finite element
models have been developed. Sane results obtained using the first t_ models have

been reported in references 2, 3 and 4.

The present paper discusses progress in the current year. The major

accomplishment is the successful development of an elastic TBC finite element
model known as TBCG with interface geometry between the ceramic layer and the bond

coat. An equally important milestone is the near-completion of the

new elastic-plastic TBC finite element model called TBCGEP which yielded initial

results. Representative results are presented in figures II through 22.

2. EX_ FINDINGS OF FRACI_ OF COATINGS

A number of researchers have reported their TBC work since the late 1970 's.

:-!ostpapers and reports dealt with testing of coated specimen ranging fran cylin-

irical coupons to full-size turbine blades. Significant progress has been made,

b.o_-ever,the central question of coating failure mechanism(s) has yet to be

conclusively ascertained.

Of particular interest to the present investigation is the experimental work

on TBC reported in reference i. In that work, coated superalloy spec_ were

: _esearch cor.ducted under NASA-CSU Cooperative Research Agreement No. NCC-3-27

_15



tested. The uncoated specimm_which is illustrated in figure I, had a radius of
0.65 cm. and a length of 7.60 cm. The specimenswere plasma-sprayed in air with
the zirconia-yttria (ZrO2-8wt.% Y203) on a nickel-chromium-alunin_n-zirconium bond
coat. Coated specimenswere next exposed to the cc_m_stion gases of a burner rig
for varying periods of time before cooling took place. _st specimenswent
through many thermal cycles.

In reference i, it was found that the coatings of all specimens tested in the
air at temperatures high enough permitting bond coat oxidation eventually failed
in spalling. The spalling which was visible had been examined by scanning elec-
tron microscopy (S_) to be preceded by ceramic coating delamination. The TBC
specimens invariably failed within the ceramic layer just above the bond coat on
cooling in air from high temperatures. The samephotomicrographs also sho_ed the
rough interface between the ceramic layer and the bond coat that contained oxides_
.Moreoxides were found in the region adjacent to the interface than the region
away from the interface. Someinterfaces were approximately sinusoidal with
peak-to-peak and peak-to-valley dimensions up to I00 micrometers (_m).

These tests illustrated someTBCfailure modes, and have led to the present
analytical modeling effort.

3. FINITE _ MDDELINGOFA CYLINDRICALTHERMALBARRIERCOATING

To determine the quantitative nature of the stress (and strain) states
associated with a TBCspecimen, a general-purpose finite el_nt program has been
employed to model a cylindrical test specimenwhich is similar to the ones
reported in reference i. The modeling concept is illustrated in figure i.

The test specimen is sufficiently long, as comparedto its radius, that the
problem can be approximated by a t_o-dimensional generalized plane-strain case.
This approximation implies, as in the classical theory of elasticity, uniform
strain in the axial (or z-) direction. The chief advantage of this approximation
is to help keep the amotmtof computation to a manageablelevel on a super
c_puter.

As shownin figure i, a sinusoidal interface between the ceramic layer and
the bond coat is introduced with a period of approximately 50 u m (0.0020 in. ) and
an amplitude of approximately 15 um (0.0006 in.). This interface is much
smoother than the one (50 _m) used for the results reported earlier in
reference 4.

The three materials comprising the substrate, the bond coat, and the ceramic
are assumedto be homogeneousand isotropic and elastic for the TBCGmodel. The
bond material in the latest model, TBCGEP,however, is assumedto be elastic-
plastic, following the classical theory of plasticity with von Mises' criterion
for yielding or the onset of plastic flow. Strain hardening which has been built
into the program, is controlled by the slope of the stress-strain curve. Up to
four line segmentscan be used to specify the stress-strain curve associated with
7he bond material.

Eachmaterial, therefore, possesses its own temperature-dependent parameters,
_u,J_as Young's modulus (E), Poisson's ratio (v), and thermal e_q_ansioncoeffi-
cient (_). In addition, the bond material has a plasticity parameter which
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controls the yielding process (YP1). Finally, the bond material is capable of

simulating oxidation effects in the manner discussed in reference 3 and 4, and

elsewhere in this paper.

An overview of the more recent (third) model known as TBCG is given in

figures 2 to 6. The model contains 1316 nodal points and 2140 elements, both

triangular and quadrilateral. Particular attention has been given to the region

in the vicinity of the model of fundamental interest in the discretization

process. Most elements in the refined region are sized at several micrometers to
insure fine resolution. Details of the refined region are shown in figures 7 to

i0, where oxidized el_nents are shown in bold lines along the sinusoidal
interface.

The actual modeling is done with the use of a general purpose computer

program known as MARC (ref. 5) which is operational on a super computer (CRAY-I)
at NASA Lewis Research Center.

The boundary conditions applied to the model are fully ccr_patible with those

normally required in the theory of continu_n mechanics. Mnre specifically, only

radial displacements are allo_ed to take place along radial lines, OA and OB, in

figures 2 and 3. Line AB is free to displace. Point 0 which represents the
center of the unit slice or the z-axis of the cylindrical specimen, is fixed.

Model TBCGEP is identically the same as TBCG, with the exception of

plasticity capability in the bond coat.

To simplify the complex problem on hand, only a uniform temperature field is

imposed on the model specimen. The steady-state solution sought here will greatly

aid in the interpretation of computational results.

4. STRESS STATES CAUSED BY THERMAL EXPANSION _[[SMATCH

With the use of the TBCG computer program, a problem sin_lating a cylindrical

7BC specimen experiencing a temperature drop of 100°C from an assumed stress-free
state at 700°C has been solved. This problem is referred to as Case B-2 which is

identically the same as Case A-2 reported in reference 3 with only one difference.

In the present case, a smoother ceramic-bond interface with an amplitude of 15 _m

is specified. The corresponding magnitude for Case A-2 is 50 _m.

_Waterial properties used for the present case are given in Table I. Selected
results of Case B-2 are shown in figures ii through 13. The strains are of

reasonable size and distribution, being analogous to the stresses. They are not

presented here to keep the length of this paper to a proper limit.

From figure ii, it can be seen that stresses in the x-direction (or radial
stresses) in the vicinity of the sine peak (asperity) are rather high and are

tensile. Such high tensile stresses could easily initiate cracking at the asperi-

ties as the TBC specimen cools down. Note these stresses correspond to a tempera-

Tire drop of 100°C. An additional temperature drop would produce proportionately
ir_creased stresses. Thus, there should be little doubt that micro-cracking could

be initiated at the asperities at scrne point during the cooling process. This is

especially convincing when or_e recalls tbmt the occurrence of such
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cracking may contribute to the acoustic emission observed as TBC specimens cool
down (ref. 6).

The peak tensile radial stresses in figure Ii are only 55 percent as large as
those found in Case A-2. The same is also true of the compressive radial stresses

between the two cases. This reduction in stress buildup can be most logically
attributed to the changing geometry between the two cases. A smoother interface

causes less stress concentrations than a rougher interface.

The stresses in the y-direction (or hoop stresses), as shown in figure 12,

are fairly uniform throughout the thickness of the ceramic layer. They are

compressive, as expected. These stresses are only slightly smaller in magnitude

than corresponding values for Case A-2. The reduction is in the range of about
ten percent. The same is true of shearing stresses for both Cases B-2 and A-2.
Again, the shearing stress maximizes near the interface where failure is observed

in reference I. At present, reliable data on allowable stresses from this ceramic

material is lacking. It is therefore inappropriate to make any conclusive remarks

about these t%_ stresses, although the shearing stress is of significant magnitude
(+ 8 _fl_a).

5. STRESS STATES ASSOCIATED WITH BOND-COAT OXIDATION

.Reference 1 reported that bond coat oxidation was seen to gr_ with thermal
cycles _.em the test was conducted in the air. The failure of TBC was correlated

with this oxidation of the bond coat. The oxide layer appeared to grow thicker

with each exposure to the air at high temperature. The net effect is equivalent

to inserting an extra oxide layer between the ceramic layer and the remaining

unoxidized bond material. The oxide is largely alunina which is a very hard and
strong material. As such, the stress state in the ceramic (and the bond) is

expected to be severely impacted by the expanding oxide layer.

As a first att_npt to model the effects of bond coat oxidation, the single
layer of finite elements bordering on the sinusoidal interface have been assigned
the properties of alundna. These are given in Table i.

In this case, oxide growth has been represented by giving these elem_ents an

artificially large thermal e_xpansion coefficient given by

a =Gxa
a

"._ere G is a growth factor, and a is the usual thermal expansion coefficient of
the oxide material (7.79 x 10-6). Proper choice of G was discussed in
reference 3.

For the present case, B-10, the growth factor, G, was set equalto -i000. A

_._perature drop of only 0.1°C was utilized to minimize thermal expansion mismatch

sLresses, i]lis yielded a very modest expansion of 0.08% in the oxide layer. The
resulting stresses due to this oxidation-like process are shown in figures 14 to
16.

_e stresses obtained for Case B-10 are, in general, the reverse of those

obtained for Case B-2. In figure 14, stresses in the x-direction are ccrnpressive
near the peak of _he asperity and tensile above the valley. Stresses in the
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y-direction, as shown in figure 15, are positive near the peak of the asperity

while still being negative elsewhere. Shearing stresses in figure 16, are, in

general, in the opposite direction (opposite sign).

The magnitude of the above stresses are very large considering that only a

very modest expansion of the oxide has been modeled. In particular, the size of
tensile radial stresses in the ceramic above the valley is noteworthy. They are

in the range of 6 to i0 MPa. Thus, the stress state due to oxidation can be

expected to have a profound influence on the coating failure mechanism.

The present case is identically the same as Case A-10 reported in reference 3

with the only exception of interface geometry, the present case involves a
smoother interface than Case A-10. As expected, radial stresses in case B-10 are

approximately 15 percent lower than those of Case A-10. The overall pattern for
radial stresses for Case B-10 is the same as that for Case A-10. The samle can be

said of patterns of hoop and shearing stresses between these two cases.

6. STRESS STATES RESULTING FROM THERMAL EXPANSION MISMATCH AND PRECRA(Z<ING

As radial stresses of large magnitude occur in the ceramic layer at the peak

of the asperity accompanied by in-plane compressive stresses, such as shown in

figures ii and 12, cracking in the tangential (or hoop) direction may very _ell

take place. Once cracks occur, the local stress states will be altered. The
results of the TBCG calculation for a pre-selected, simnlated crack are shown in

figures 17 through 19. This problem is labeled Case B-14. The stresses corres-

pond to a temperature drop of 100°C. The radial stresses in figure 17 have been
redistributed in the presence of the crack. High tensile radial stresses continue
to exist near crack tips, possibly causing additional circumferential cracking.

Therefore, crack propagation is entirely expected. However, the magnitudes of
such radial tensile stresses are expected to become progressively lower as the

crack continues to grow in the circunferential direction. It is also noted that

some compressive radial stresses do exist above the valley. Such compression is

thought to be able to arrest (or at least slow down) the continued cracking in the
_bsence of other forces (such as those resulting from oxidation) which promote

crack growth. This stress phenomenon helps explain the previous observation made
in reference I, that TBC specimens which did not experience oxidation had a long

thermal cycle life (e.g. in excess of i0,000 cycles).

Radial stresses at a considerable distance away from the pre-cracking are

left almost unchanged from that of Case B-2, as expected. The same is also true

with stresses in the y-direction and shearing stresses.

Results of a similar problem, Case A-14, were presented in reference 4. A

comparison between the two sets of results indicates that stress patterns in both
cases are very ranch similar, with the present case yielding a reduction of

approximately i0 percent in stresses due to the presence of a smoother
ceramic-bond interface. This observation is both logical ar.d consistent with two

}ther cc_parisons made earlier in this paper (in Sections 4 and 5).
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7. PRELIMINARY RF_TS OF I_CITY IN THE BOND COAT

Initial operational capability of the newest computer program called TBCGEP

was achieved in July 1986. This program has been designed to model the

cylindrical TBC specimen with an elastic-plastic bond coat. By choice, the
ceramic layer and the superalloy substrate remain elastic. Other than this

plastic material property, all other features of TBCGEP are identically the same
as those of the conlmlter program TBCG.

Results of a preliminary elastic-plastic TBC run known as Case EP-2, are
presented in figures 20 through 22. The problem parameters for the case under

consideration are given in Table I. The data used are nearly identical to those

of Case B-2. However, a temperature drop of 0.1°C was utilized in this case on a

trial basis. (This will also pave the way for successive calculations to

acconmodate plastic flow/strain hardening.) At the same time, the plasticity

yield parameter (YPI) was arbitrarily set at 69 MPa for lack of proper data for

the bond coat yielding behavior. (An experimental effort is underway to determine

plastic behavior of a related bond coat material. Results from this particular
testing are expected to be used for future TBCGEP rums).

The elastic-plastic results presented in figures 20 to 22 are necessarily

preliminary in nature. The radial stresses in the bond coat are modest in magni-

tude. It is premature to draw any specific conclusions from these very limited
numerical results of Case EP-2. However, the radial stress pattern in the

ceramic, as shown in figure 20, is seen as somewhat similar to that of Case B-2,
figure ii. The magnitudes of the elastic-plastic radial stresses in the ceramic
are only a small fraction of that of the elastic case. Such low level of stresses

could nevertheless be increased, or decreased, by the proper selection of the YPI

value for the bond coat material. As discussed in reference 7, it is generally

understood that plasticity leads to the loss of energy in a loaded body, resulting

in a somewhat lowered state of stresses than a similar elastic body subjected to

the same loads and boundary conditions. In addition, the size of temperature drop
will influence the state of stress as well. Thus, these radial stresses in the

ceramic are presented here merely as an illustration of the plausible pattern.

Considerable effort will be made to quantitatively interpret the meaning of
several elastic-plastic runs in the future.

The same can also be said about the states of stresses in the y-direction and

of the shearing stresses. Nonetheless, the low state of stress in the y-direction

in the bond coat near the peak of asperity is noteworthy. Such a pattern is in

clear contrast to that of the stress in the x-direction in the same region.

8. A PRELIMINARY MECHANISM FOR OXIDATION-INDUCED COATING FAILURE

In reference 3, a preliminary mechanism for oxidation-induced coating failure
was proposed, as shown in figure 23. The results presented in preceding sections
!end additional credibility to that proposed mechanism.

The proposed TBC failure mechanism is largely based on the elastic stress

patterns. The actual mechanism would most likely be further complicated by the

effects of inelasticity and anisotropy. Nevertheless, it appears that the current

computer modeling effort has begun to provide important insights into the

the_chanical behavior of the thermal barrier coatings. Additional
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elastic-plastic computer analyses planned for the next eight months will certainly
contribute to the evaluation of the validity of the proposed mechanism.

9. CONCLUDING RD4ARKS

From the preceding discussions in Sections 4 through 6, it is not difficult

to suggest that a rough ceramic-bond interface introduces states of higher
stresses, as expected. This is a tradeoff the designer will have to deal with.

The capability to generate a reasonably useful set of data pertaining to the

cylindrical TBC specimen now exists, along with a limited amount of data
(presented here and in references 2, 3 and 4.) These are now available for use by

designers or researchers who are interested in TBC failure by either oxidation or
fracture caused stress intensities.

With the atta_t of initial operational capability of the latest (and

fourth) computer program called _, several ccm_uter runs will be made to
calculate stresses and strains in the cylindrical TBC specimen with an elastic-

plastic bond coat capable of strain hardening following yielding. Experimental

data on the strength and plastic behavior of the bond material, as _ell as the
ceramic, would be of utmost usefulness to this modeling effort. The nurerical

data so generated by the TBCGEP model should be illustrative of the elastic-

plastic behavior of the thermal barrier coating in a comprehensive way hitherto-
before considered impossible. Such data could, in turn, guide the experimentalist

and the designer in their work on the TBC.

The approach or methodology developed in this investigation is applicable to

analyzing any TBC specimens or engine parts protected by related coatings. The

latest program, the TBCGEP, can be modified to deal with more complex geometry,

where necessary. The only limitation at present time is the camputing power.
Nevertheless, it is believed that a reasonable modeling effort of a coated turbine

blade can now be attempted.

i.
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PARAMETERS

.Young's
>bdulus (MPa)

Substrate

Bond Coat

Oxide Layer

Ceramic

Poisson' s Ratio

Substrate

Bond Coat

Oxide Layer

Ceramic

Coefficient of

Thermal Lxpans ion

Substrate

Bond Coat

Oxide Layer

Ceramic

Cracks

Temperature Drop

TABI_ 1 MATER/AL AND OTHER PARAMETERS

Case B-2 Case B-10 Case B-14 Case EP-2

0.1758XI06 0.1758XI06 0.1758XI06 0.1758XI06

0.1379XI06 0.1379XI06 0.1379XI06 0.1379XI06

--- 0.3448XI06 ......

0.0276XI06 0.0276XI06 0.0276XI06 0.0276XI06

/C)

0.25 0.25 0.25 0.25

0.27 0.27 0.27 0.27

--- 0.32 ......

0.25 0.25 0.25 0.25

13.9 IX10- 6 13.91XI0- 6 13.91XI0 -6 13.91XI0- 6

15.16XI0 -6 15.16XI0 -6 15.16XI0 -6 15.16XI0- 6

.... 7.79XI0 -3 ......

I0.01XI0- 6 I0.01XI0- 6 I0.01XI0- 6 I0.01XI0- 6

NO NO YES NO

-100°C -0. I°C -I00 °C -0. I°C
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Figure 1. CYLINDRICAL TBC TEST SPECIMEN
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Figure 13. SHEARING STRESS DUE TO THERMAL EXPANSION MISMATCH

Ceramic
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THERMAL BARRIER COATING LIFE

PREDICTION MODEL DEVELOPMENT*

T.E. Strangman, J.F. Neumann and A. Liu

Garrett Turbine Engine Company (GTEC)

Thermal barrier coatings (TBCs) for turbine airfoils in high-performance

engines represent an advanced materials technology with both performance and

durability benefits. The foremost TBC benefit is the reduction of heat

transferred into air-cooled components, which yields performance and dura-

bility benefits (Figure I). To achieve these benefits, however, the TBC sys-

tem must be reliable. Mechanistic thermomechanical and thermochemical life

models are therefore required for the reliable exploitation of TBC benefits

on gas turbine airfoils. GTEC's NASA-HOST Program (NAS3-23945) goal is to

fulfill these requirements.

This program focuses on predicting the lives of two types of strain-

tolerant and oxidation-resistant TBC systems that are produced by commercial

coating suppliers to the gas turbine industry (Figure 2). The plasma-sprayed

TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon

shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAIM (or

CoNiCrAIY) bond coating and an air-plasma-sprayed yttria (8 percent)

partially stabilized zirconia insulative layer, is applied by Chromalloy

(Orangeburg, New York), Klock (Manchester, Connecticut), and Union Carbide

(Indianapolis, Indiana). The second type of TBC is applied by the electron

beam-physical vapor deposition (EB-PVD) process by Temescal (Berkeley,

California).

The overall objective of Phase I of this program is to develop mechanis-

tic mission-analysis-capable life prediction models for the predominant

environmental and thermomechanical TBC failure modes for preliminary design

analyses. Because the TBC must be considered early in the component design

process in order to fully incorporate and exploit its benefits, an additional

model goal is to drive the preliminary TBC life model with component thermal

analysis data and simple snap acceleration-snap deceleration stress analysis

data. This approach permits the designer to economically include TBCs into

initial iterations of the blade and vane design process. More refined TBC

analyses for final design lives are the subject of Phase II.

A .comprehensive strategy to achieve this goal has been developed that

includes the analyses of the TBC durability on both the TFE731-5 HP turbine

blades (Figure 3) and the burner rig test specimens. Due to the complex

nature of the problems involved, the finite element method is deemed to be

most effective in promoting the in-depth understanding of the essential over-

all thermal/mechanical behavior of the TBC systems as well as the inter-

actions between the individual material regimes and the interracial condi-

tions in the TBC systems. This approach also interfaces efficiently with

existing airfoil design methods.

*Work done under NASA Contract NAS3-23945.
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For computational efficiencies, typical preliminary design (PD) finite

element models were first constructed to analyze the bulk behavior of the TBC

systems on the airfoil component (Figure 4). Critical locations, in terms of

temperatures, stresses, and strains or their combinations, can be identified

from these PD models. Refined sub-models are then constructed for analysis

of critical locations. Detailed thermomechanical and thermochemical behavi-

ors of the TBC systems and the interactions between the individual material

regimes and the interracial conditions are being analyzed via these refined

sub-models. Major analysis work in this program is being performed with

ANS¥S, a commercially available general purpose finite element code.

For preliminary component design analyses (Phase I), TBC lives are being

independently calculated for three operative damage modes:

Bond coating oxidation

Molten salt film damage, and

Thermomechanical stress induced spalling

Computation of the oxidation life of a TBC system in the preliminary

design model is driven by the component thermal analysis and engine power

requirements during a mission cycle.

Molten salt film damage life is calculated using the component thermal

analysis, engine power requirements during a mission, and aircraft altitude

(salt ingestion).

Zirconia spalling associated with thermomechanical stresses is calcu-

lated based on the analysis of the snap-cycle thermal transients as well as

the steady-state condition and the rotational loads in a mission cycle. Cal-

culated snap-cycle interracial tensile stresses and the largest pre-existing

flaw diameter (determined by NDE or calculated from bond strength tests) are

used to estimate a stress intensity factor that the coating must endure with-

out spalling. As indicated in subsequent paragraphs, the fracture toughness

of the zirconia or the bond coating-zirconia interface is dependent upon

exposure temperature and time. Time and temperature dependent changes in the

zirconia or interfacial toughness are calculated based on the thermal analy-

sis results of the component and a linear cumulative damage model to account

for variations in a mission cycle.

Figure 5 is a schematic of the TBC life model that illustrates these

three failure modes and the respective temperatures regimes at which these

failure modes are likely to occur. Figure 6 illustrates parameters that

affect each of these three major failure modes.

The preliminary design TBC life is assessed via a linear damage rule,

composed of damages from these three modes during each of the mission cycles,

assuming no interactions between these failure modes; that is

Life = [(Lifeoxid )-I + (Lifesalt)-I + (Lifestress)-l] -I
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However, the refined sub-models are being constructed to be sufficiently

flexible and detailed to analyze the interactions between these models. Sub-

sequent improvements in Phase II of the program will incorporate failure mech-

anism interactions into the life prediction model.

Burner rig and mechanical property data have been obtained to quantify

the capabilities of each of the TBC systems for each major mode of degrada-

tion. Burner rig test data are illustrated in Figures 7 and 8 for plasma-

sprayed and EB-PVD TBC coating systems. These data indicate that bond coat-

ing oxidation, high temperature zirconia densificiation (sintering), and

molten salt film damage at intermediate temperatures significantly affect TBC

life (Figure 7). The length of the heating cycle must also be considered

when computing a coating life (Figure 8).

Cohesive and interfacial toughness data have also been measured for

plasma-sprayed and EB-PVD TBC systems (Figure 9). It has been observed for

both types of coating systems that toughness is reduced by exposure at high

temperatures. A step transition in toughness, which is associated with sin-

tering shrinkage, is illustrated for plasma-sprayed TBC systems as a function

of exposure time at II00C in Figure I0. The transition to lower toughness

levels correlates well with high temperature burner rig test data, as indi-

cated in Figure 7.

Lives of these TBC systems are being predicted for TFE731 high-pressure

turbine blades for factory engine test conditions, as well as business air-

craft mission. Thermal analysis of the turbine airfoil (Figure ii) indicates

that the bond coating oxidation degradation mode results in minimum predicted

lives of approximately 7300 hours with the plasma-sprayed TBC system for the

business aircraft missions and I000 hours for the factory engine test condi-

tions. Lives for other failure modes for the plasma-sprayed as well as the

EB-PVD TBC systems are currently being analyzed.

This program is now in the third year of Phase I. The program schedule

is provided in Figure 12.
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THERMAL BARRIER COATING LIFE PREDICTION MODEL*

B.H. Pilsner, R.V. Hillery, R.L. McKnight, T.S. Cook, K.S. Kim, and E.C. Duderstadt
General Electric

Aircraft Engine Business Group

INTRODUCTION

The objectives of this program are to determine the predominant modes of

degradation of a plasma sprayed thermal barrier coating system, and then to develop

and verify life prediction models accounting for these degradation modes. The

program is divided into two phases, each consisting of several tasks. The work in
Phase I is aimed at identifying the relative importance of the various failure

modes, and developing and verifying life prediction model(s) for the predominant
mode for a thermal barrier coating system. Two possible predominant failure

mechanisms being evaluated are bond coat oxidation and bond coat creep. The work in

Phase II will develop design-capable, causal, life prediction models for

thermomechanical and thermochemical failure modes, and for the exceptional

conditions of foreign object damage and erosion.

Currently, work is continuing in Task II of Phase I aimed at developing a

preliminary TBC life prediction model. This model will be created by combining the
results of the analytical program, the thermomechanical experiments and the results

of the failure mechanism examinations of Task I.

TBC SYSTEMS

The primary TBC system consists of a low pressure plasma-sprayed (LPPS) bond

coat layer of Ni-22Cr-lOAl-O.3Y, an air plasma sprayed yttria partially stabilized

zirconia (ZrO2-8%Y203) top coat, on a conventionally cast Rene' 80 substrate
alloy (Table l). This bond coat composition has been demonstrated to possess good
oxidation resistance and has a large data base as a TBC bond coat. The

ZrO2-8%Y203 top coat was chosen since numerous studies have shown that
zirconia partially stabilized with 6-8 wt.% Y203 is the best composition for

plasma sprayed TBCs (ref. l). The Rene' 80 substrate was chosen since a large TBC
data base exists for this substrate composition.

Four different TBC systems utilizing four different bond coats have been

evaluated in the experiment to evaluate the effect of bond coat creep strength on

TBC thermal cycle life (Table 2). These four TBC systems also utilize

ZrO2-8%Y203 top coats and Rene' 80 substrates. TBC system #l has the same

NiCrAIY bond coat utilized in the primary TBC system. TBC systems _2, m3, and #4

have modified NiCoCrAIY bond coats with alloy additions to increase the bond coat

creep strength. An aluminide overcoat was used in each of these systems (I-4) to
reduce differences in oxidation resistance for the four bond coats. A comparison of

the primary TBC system and its counterpart with an aluminide overcoat is shown in

Figure I.

*Work done under NASA Contract NAS3-23943.
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THERMAL CYCLE TESTING

Thermal cycle testing is being performed in an automated Rapid Temperature
Furnace (Figure 2). The thermal cycles consist of ten minutes heat up, a 45 minute
exposure at I093°C (2UOO°F), and Ib minutes forced air cooling (Figure 3). This
furnace utilizes a lift which automatically cycles the specimens from the upper
furnace exposure zone to the lower cooling compartment where a fan provides forced
air cooling. Both air and argon pre-exposures have been used to create changes in
both bond coat and top coat prior to these thermal cycle tests.

BOND COAT OXIDATION EXPERIMENTS

In the bond coat oxidation experiments, pre-exposures in air or argon were
utilized. The goal of pre-exposures in air was to develop oxide scales prior to
thermal cycling, while the goal of the pre-exposures in argon was to allow the other
thermally activated phenomena present in the air pre-exposures to occur without
developing the oxide scale. The intent was to isolate the effect of bond coat
oxidation on thermal cycle life.

As reported previously (ref. 2), the specimens pre-exposed in argon failed
before the specimens pre-exposed in air (Figure 4). The detrimental effect of argon
was believed to be associated with its effect on the type of oxide that forms on the
bond coat surface and an in-house program (ref. 3) was performed to help understand
this phenomenon. This study indicated that a possible cause of the shortened life
was the diffusion of Cr, Ta, W, and other substrate elements to the bond coat/top
coat interface during the argon pre-exposure prior to significant bond coat
oxidation. The result was a less protective oxide scale.

To further evaluate this phenomenon, an experiment was run in which all

specimens (except one set of baselines) received a I0 hour air pre-exposure at
I093°C (2000°F) prior to either air or argon pre-exposures, and thermal cycle
testing. In this case, it can be assumed that all specimens developed the same
(Al203) film in the initial air exposure and that the effect of further
oxidation of the bond coat would be seen only in those specimens exposed for
additional times in ai_.__[r. The results (Figure 5) clearly indicate that continued
exposure to air is more detrimental than a prolonged argon exposure (when both are
preceded by the air pre-exposure). The larger decrease in thermal cycle life for
air exposures is attributed to the continued growth of oxide scales, whereas little
or no additional growth occurred in the argon exposures. These results demonstrate
the importance of bond coat oxidation to the overall TBC failure mechanism.

Further evidence of the importance of bond coat oxidation is shown by the

following observations. Continuous oxide scales of approximately 4 _m were

typically observed at the bond coat/top coat interface for the "as-sprayed" and "air

pre-exposed" specimens at failure after thermal cycle testing (Figure 6). This

observation of a "critical" oxide thickness being necessary to cause failure is

consistent with the work of Miller (ref. 4), who noted similar weight changes

(oxidation) at failure of specimens with a CaSi04/MCrAIY TBC, regaraless of test

temperature.

OE _GOR Q,'JALiTY
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BOND COAT CREEP EXPERIMENTS

The effect of bond coat creep strength on thermal cycle life was evaluated

utilizing four different bond coat alloys (Table II) that had significantly

different creep strengths. The modified NiCoCrAIY bond coats include various
additions of Mo, Ta, W, Re, Hf, C, B, Si, Zr, and Ti and also received an aluminide

(Codep) coating (Figure Ib) as described earlier. All specimens were coated with

the same ZrO2-8%Y203 ceramic layer. Six specimens of each TBC system were
thermal cycle tested. Two were exposed in argon for lO0 hours at I093°C (2000°F),

two were exposed in air for the same time and temperature, and two specimens

received no pre-exposure. The difference in thermal cycle lives was expected to be
a function of bond coat creep strength and pretest conditions.

[he results clearly showed that the TBC specimens with the NiCrAIY + aluminide

bond coat, which has the lowest creep strength, resulted in the shortest thermal

cycle life for all pre-exposure conditions (Figures 7 & 8). However, the thermal

cycle life differences for the other TBC systems appears to be minimal. The small
differences may indicate that the bond coat creep strength differences (Table If)

were not large enough to offset the effect of other failure mechanisms (NiCrAIY is

significantly lower in strength than the other three). Interestingly, the IO0 hour

air pre-exposure did not significantly affect the thermal cycle life of the systems

with "high strength" bond coats (Systems 2, 3, and 4). This indicates that, as the
thermal cycle life increases (as a result of increasing the bond coat creep
strength), the relative contribution of the pre-exposure (oxidation) to the overall
failure mechanism is reduced.

In a recent additional study at GE, different bond coat creep strengths were

produced by applying various heat treatments to the same bond coat (System _4) to
eliminate any differences that might have resulted from aluminide effects on the
four bond coats. The results of this study (ref. 5) indicate that TBC thermal cycle

life increases with heat treatment temperature (increasing creep strength), again

demonstrating that creep strength of the bond coat does indeed influence TBC life.

KEY PROPERTY DETERMINATIONS

Tensile strength, Poisson's ratio, dynamic elastic modulus, and coefficient of

thermal expansion for the bond coat were determined from room temperature to

approximately I093°C (2000°F). Standard testing procedures and test specimens were
utilized for the NiCrAIY bond coat specimens. The specimens were machined from 5.1

cm (2 inches) by 15.2 cm (6 inches) heat treated LPPS NiCrAIY billets of various

heights. The as-sprayed billets received a four hour vacuum heat-treatment at
I_930C (2000°F) to increase the machinability of the billets. The I0930C heat
treatment was chosen since this is the soak temperature utilized in thermal cycle

testing. The test results are listed in Table Ill and IV, and Figures 9 and lO.

Dynamic elastic modulus, dynamic shear modulus, Poisson's ratio, and coefficient
of thermal expansion for the top coat were determined from room temperature to

approximately I093°C. In all tests, free-standing air plasma sprayed specimens were
utilized and were produced by depositing the ceramic material on stainless steel
substrates and inducing a thermal shock to cause spallation of the intact ceramic
sheet. Some final machining was required to achieve the desired specimen
configurations. These specimens also received a four hour heat treatment in air at
I093°C (2000OF) prior to testing. The test results are listed in Table V and VI,
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and Figure II. Interestingly, the average elastic modulus value determined at room
temperature from the bend test (Table V) is a factor of lO less than the values

measured by the resonant frequency method (Table VI). The difference is possibly
associated with the presence of cracks, porosity, and splats which would tend to

decrease the apparent modulus in the bend test. These factors should play a smaller
role in the resonant frequency method.

TBC ANALYTICAL MODELING PROGRAM

Five different analytical tasks, each dealing with a particular aspect of TBC

failure, are being investigated using finite element analysis. The first three

tasks involve an axisymmetric model (Figures 12 & 13) of a multilayer cylinder, the

fourth task examines a disk model, and the fifth task is intended to combine finite

element models with simple crack and diffusion models. The specific conditions of
each task are discussed below.

Task a. In this evaluation, the same temperature was assumed at the inner and

outer surfaces of the specimen (i.e. no gradient across the TBC coated tubular

specimen). The GE cyclic temperature rig's cycle (lO-minute heat up, 45-minute

exposure at I093°C, 15-minute cooling, Figure 3) was modeled.

Task b. In this task, a temperature distribution generated by a gradient across
the TBC cooled tubular specimen is modeled. The work models the effect of the

large gradients (IUO-150°_) developed across the ceramic.

Task c. In this evaluation, cracks will be "placed" along the bond coat/top
coat interface, thereby producing a ring crack. One or more cracks
perpendicular to the free surface will then be added. The goal is to examine
crack tip driving forces to determine any changes resulting from accommodation
of displacements by the multiple cracks. Small submodels involving a number of
cracks may be studied applying perturbation approaches (localized crack
changes). The conditions for this modeling will be based on the results of the
first two tasks described above.

Task d. The importance of edge effects in multilayer disk specimens will be

evaluated. Since most TBC applications involve edge effects (coating "patches",
component edges, cooling holes, etc.), it is important to examine how these

edges affect thermal cycle life.

Task e. In this task, the finite element model results from the four preceding

tasks, along with some simple elastic crack models, thermal mismatch strains, a
,Jiffusion model (e.g., _ _ Dt), and the effect of hydrostatic pressure to

further examine crack tip driving force. Since this is an elastic model only,

there are limits on its potential but it is hoped that some significant insight
on cracking in ceramics can be gained in this Task.

in the first four tasks of the modeling work, emphasis will be placed on
extracting stress and displacement data as a function of time and location under
changes in geometry and boundary conditions. In cases where sufficient material
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data is available (crack initiation, propagation, or failure data), quantities
predicted by the models will be comparedto this data for failure information.

The axisymmetric finite element program (Figures 12 & 13) has been applied to
the first two analytical tasks. The bond coat stress free temperature was assumed
to be 982°C (1800°F), while the top coat stress free temperature was assumedto be
2u4% (400°F). These are the temperatures of the substrate during application of
these coatings. In the analysis, both elastic and plastic deformation were
included, but no plasticity developed for the temperature conditions selected (time
at temperature was not included). Analysis of the results for the first two
analytical tasks is discussed below.

In Task a, the specimenwas assumedto undergo the thermal cycle of 21°C -
I093°C - 21°C in the cycling rig. Since this is a quasistatic test, the entire
specimen was assumedto be at a given temperature. Effective, raaial, axial, and
hoop stresses versus distance in the radial direction are plotted in Figure 14 for
four different temperatures [21% (70°F), 204°C (400°F), 982°C (1800°F), and I093°C
(20000F)]. As indicated, the stress free temperature for the top coat is 204°C
(400°F), therefore, zero stress is found in the top coat at this temperature.
However, since the top coat was applied to the bond coat, 982°C (1800°F) is no
longer the bond coat stress free temperature. Therefore, small stresses due to the
top coat application develop in the bond coat at this temperature.

In the Task b, a temperature distribution across the TBCsystem was modeled. In
this examination, the surface of the ceramic was set at I093°C (20000F), the bond
coat/top coat interface at 943°C (17300F), the bond coat/substrate interface at
941% (1725°F), and the inner wall of the tube at 927% (1700°F). These results
(Figure 15) were plotted and comparedwith the results present when the system was
at 21°C (70°F). Interestingly, the largest effective stress is present in the
ceramic near the bond coat/top coat interface which is the typical failure location
for thermal barrier coatings. Comparisonof the results of deformation behavior for
Tasks a and b (Figures 14 and 15) indicate how significantly the presence of thermal
gradients can affect the stress state present in TBCs.

THERMOMECHANICALEXPERIMENTS

fhree different thermomechanical experiments have been planned to evaluate the
thermomechanical characteristics of TBCs. The primary goal of these examinations is
to measurethe strains induced during thermal cycling of TBCs, and to relate these
strains to the observed failure modes.

In the first experiment, a thermal barrier coated LCF (low cycle fatigue) tube
specimen (Figure Ib) will be thermally cycled using an induction heating system and
a forced air cooling system. The thermomechanical nature of two different thermal
cycles will be evaluated. The first thermal cycle will be as close to the GEcyclic
temperature rig's cycle (Figure 3) as possible. This experiment is aimed at
determining the magnitude of strains induced by thermal cycling of the TBCspecimen
under essentially zero mechanical load. This experiment will also attempt to
determine if any phasing exists between the strains observed for the substrate and
the ceramic, or if the ceramic simply follows the displacement of the metal
substrate.
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In the second experiment, a thermal barrier coated LCF tube specimen will again

be thermally cycled using an induction heating system and a forced air cooling
system. Tensile, compressive, and zero loading will be applied to three TBC

specimens ana these specimens will be thermally cyclea to failure. The goal is to

evaluate the effect of compressive and tensile loading on TBC thermal cycle life.

In the third experiment, the thermal barrier coating will be applied to thin

Rene ° 80 (substrate) strips which will then be heated and cooled using induction

heating and forced air cooling. It is anticipated that the thin Rene' 80 strips and
their TBC coatings will bend measurably during thermal transients because of the

stresses induced by thermal expansion differences. Values of the curvature changes

during coating deposition and during subsequent thermal transients will be compared

to predicted curvatures based on natural properties of Rene' _0 and the coating
materials. This data, in conjunction with data from the uncoated Rene' 80 strip ano
free-standing ceramic strip should provided insight into the behavior of coated

specimens, and thus contribute to a better understanding of the thermomechanicai
characteristics of TBCs.

l •

o

o

1
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Table I

BASELINETHERMALB/_RRIERCOATINGSYSTEM(WEIGHTPERCENT)

Substrate (Rene '80): Ni-14Cr-g.5Co-STi-4W-4Mo-3Al-O.I7C-O.O3Zr-O.OISB

Bond Coating : Ni-22Cr-lOAl-O.3Y (Low Pressure Plasma Spray)

Top Coating : ZrO2-8Y203 (Air Plasma Spray)

Table II

BOND COAT CREEP EFFECT TBC SYSTEMS

Systems Substrate Bond Coating Over Coating Top Coating Bond Coat Creep

(Larson/Miller

Parameter @ 3

KSI - rupture

test)

l Rene'80 Bond Coating I'

2 Rene'80 Bond Coating 2*

3 Rene'80 Bond Coating 3*

4 Rene'80 bond Coating 4*

Aluminide ZrOz-Y203

Aluminide ZrOz-Y203

Aluminide ZrO2-Y203

Aluminide ZrO2-Y203

39.0

45.7

47.0

48.4

' Ni-22Cr-lOAl-O.3Y

* Modified NiCoCrALY bond coats
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TEST TEMPERATURE *C

Ambient Z5 ° (77°F) z

$38°C (IOUO°F) 2

760°C (1400°F) 2

I038°C (1800°F) 3

1093% (ZOOO'F) 3

Table I I I

LPPS NI-2ZCm-IOAI-O.3Y BOND COAT TENSILE PROPERTIES

ULTIMATE STRENGTH NPa O.Z YIELD MPa % ELONGATION

1320 (z91KSI) ....

1240 (179 KSI) lZZO (162 KSi) S.Z

450 (65 KsI) 16o (z3 KSI) 18.3

16 (Z.3 KSI) 13 (I.9 KSI) 149.3

4 (0.6 KSI) 3 (0.4 KSI) 248.3

% REDUCTION IN AREA

6.2

19.6

95.b

92.4

INo measurable plastic deformation (1 specimen)

2Average of three test specimens.

3Average of two test specimens.

Table IV

ELASTICMOOULIANDPOISSON'SRATIOOFLPPSNi-Z2Cr-IOAI-O.3Y

Temperature "C E {Axial) GPa E {Oimetral I GPa

20 (R.T.) 206 (29.9 MSl) 696 (100.8 MSI)

538 (IO00"F) 180 (26.1MSI) 602 (87.3 MSI)

760 (1400°F) 101 (14.7 MSI) Z73 (39.6 MSI)

982 (1800"F) ....

1093 (2000"F) ....

* No linear portion to stress/strain curves.

Poisson's

Ratio

0.30

0.30

0.37
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Table V

I_£CHANICALTESTINGOF PLASMA-SPRAYEDZlRCONIAEARS
BEND TEST

Sample Width, Thickness, Length,

I.D. cm cm cm

I-I 0.848 0.238 6.746

I-2 0.648 0.235 5.747

I-3 0.848 0.232 5.740

Ultimate Ultimate Strain to Elastic

Load, StreSS Failure Modulus

Kg (lb) MPa (kst) in/inxlO -3 GPa (MSI)

7.03 (15.5) 53.3 (7.73) 2.89 19.9 (2.80)

6.21 (13.69) 56.8 (8.23) 3.07 20.5 (2.92)

5.26 (11.59) 49.3 (7.15) 2.59 21.8 (3.15)

Average Elastic Modulus 20.6 GPa (2.98MS1)

Table VI

ELEVATED TEMPERATURE DETERMINATION OF ELASTIC MODULUS r SHEAR MODULUS,

AND POISSON'S PATIO OF APS ZrO;-8Y?Ol

E

Elastic

Tetap., Resonant Frequency (Hz) Modulus
•C Flexural Torsional GPa (MSI)

25* 1472 3697 210 (30.5)

25 1466 3672 208 (30.2)

100 1453 3630 205 (29.7)

150 1444 3610 202 (29.3)

200 1436 3573 200 (29.0)

300 1425 3443 197 (28.6)

400 1412 3343 193 (28.0)

450 1411 3325 193 (28.0)

500 1401 3299 190 (27.6)

538 1395 3281 189 (27.4)

800 1387 3265 187 (27.1)

700 1375 3209 184 (26.6)

800 1360 3160 179 (26.0)

900 1342 3135 175 (25.3)

982 1340 3122 175 (25.3)

1000 1362 3147 179 (26.1)

1038 1374 3163 183 (26.5)

1093 1342 3185 175 (25.3)

G

Shear

Modulus

GPa (MSI}

91 13.2)

90 13.1)

88 12.8)

87 12.6)

86 12.4)

79 11.5)

75 (10.8)

74 (10.7)

72 (lO.5)

72 (IO.4)

71 (10.3)

69 (I0.0)

67 (9.7)

66 (9.5)

65 (9.4)

66 (9.6)

67 (9.7)

68 (_.B)

Poisson's

Ratios

0.15

0.16

0.16

0.16

0.17

0.24

0.29

0.31

0.31

0.31

0.31

0.33

0.34

0.33

0.34

0.36

0.37

0.2.9

* Specimen suspended on cotton thread, all others suspended on Pt wire.
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THERMAL BARRIER COATING LIFE PREDICTION MODEL DEVELOPMENT*

J. T. DeMasi and Dr. K. D. Sheffler
United Technologies Corporation

Pratt & Whitney

The objective of this program is to establish a methodology to predict Thermal
Barrier Coating (TBC) life on gas turbine engine components. The approach involves
experimental life measurement coupled with analytical modeling of relevant degrada-
tion modes. The coating being studied is a flight qualified two layer system, de-
signated PWA 264, consisting of a nominal ten mil layer of seven percent yttria
partially stabilized zirconia plasma deposited over a nominal five mil layer of low
pressure plasma deposited NiCoCrAIY. Thermal barrier coating degradation modes being
investigated include: thermomechanical fatigue, oxidation, erosion, hot corrosion,
and foreign object damage.

The program is divided into two phases; the first phase, currently in progress,
has identified cyclic mechanical damage to the ceramic and interfacial oxidation as
the predominant degradation and failure modes (Task I) and is developing (Task II)
and substantiating (Task III) a correlative life prediction model for these pre-
dominant modes. Phase II will address mechanistically based modeling for all

relevant degradation modes.

PHASE I, TASK I FAILURE MECHANISM DETERMINATION

The objective of Task I was to identify predominant TBC failure modes and to
develop a preliminary correlative life prediction model for these modes. The ap-
proach to failure mode identification included an extensive review of experimental
and flight service hardware, together with a laboratory test program designed to
study the influence of driving forces such as temperature, frequency, transients,
environment, coating thickness, etc. on degradation and failure life.

Results of the hardware evaluation indicate the predominant failure mode to be
thermomechanical spallation of the ceramic coating layer, resulting from the forma-
tion of a dominant ceramic crack parallel and closely adjacent to the metal-ceramic
interface as shown in figure I.

Laboratory burner rig and furnace exposure test results show cyclic coating life
to be reduced by increased temperature, increased coating thickness, reduced cycle
rate, pre-induced oxidation damage, and artificial sea salt injected into the burner
flame. Analysis of these data leads to the conclusion that cyclic mechanical damage
to the ceramic and interfacial oxidation of the underlying metal layer are the pre-

dominant degradation modes in clean fuel cyclic thermal exposure. Exposure to salt
contamination more severe than that normally encountered in commercial flight
service can cause premature ceramic failure.

Metallographic examination of specimens removed from the burner rig test at
various fractions of expected spallation life shows ceramic cracking as early as 20%
of expected life. Examination of crack morphology at successively increasing life

*Work conducted under NASA Contract NAS3-23944
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fractions suggests that spallation results from progressive link-up of adjacent sub-
critical cracks as opposed to subcritical growth of a single dominant crack as
presented in figure 2. Direct evidence of interfacial initiated cracking is diffi-
cult to find, indicating that the role of oxidation in damageaccumulation may be
less direct then previously thought. It is interesting to note that examples of
scale initiated cracking are easier to find in older specimens, occurring in the
samestructure together with larger numbers of well developed longer cracks which
appear to be isolated from the interface. This observation could suggest that the
thicker oxide scale developed at longer exposure times can initiate cracks, but
that this is not the "critical" damagemode in the sense that those cracks which
propagate to failure are initiated early in life and appear to be isolated from the
interface. An example of this is found in figure 3.

To support the Task I preliminary modeling effort, mechanical property tests
were conducted on bulk ceramic fabricated by plasma deposition with a structure that
closely simulates the strain tolerant ceramic coating. The most significant result
of these tests is the observation of highly non-linear tensile stress-strain be-
havior at all temperatures between ambient and 2200°F. This data is summarized in
figure 4. While there is significant variability of initial and overall stiffness,
the basic non-linear shape of the stress-strain curve is similar at temperatures up
to 2000°F. At 2200°F there is substantially more curvature than at lower tempera-
tures. Both ultimate tensile strength and tensile failure strain are relatively low
(=3Ksi ands0.3%) at all temperatures.

Compressive stress-strain behavior, summarized in figure 5, differs signifi-
cantly from tensile behavior; compressive strengths are much higher than tensile
strengths, and there appears to be distinct linear and non-linear segments to the
stress-strain curves. The lO00°F and 1600°F compressive stress-strain curves clearly
are shaped differently than corresponding tensile stress-strain curves. At 2200°F,
compressive deformation begins to resemble tensile deformation. Initial compressive
stiffness appears to be essentially independent of temperature in the range studied.

As shownin figures 6 and 7, the strain tolerant ceramic exhibits a significant
creep response at 1800°F and 2200°F; no response was observed in a tensile creep
test conducted at IO00°F. Based on this observation, it will be important to incor-
porate a time dependent material response in the advancedmodeling effort.

The data plotted in figure 8 shows an apparently real fatigue response in the
strain tolerant ceramic, but with a stress dependencesubstantially different from
that observed in metals. Whereasmetallic materials typically exhibit slopes ranging
from _ -1.5 with reversed plasticity to _-8 in the fully elastic range, the data
in figure 8 appears to have a slope on the order of -50. Specific degradation and
failure mechanismsresponsible for this very stress sensitive fatigue behavior are
not presently understood.

Preliminary fracture toughness tests indicate that toughness for cracking per-
pendicular to the splat structure is on the order of 0.5 Ksi _/-i-n; it is expected
that toughness for in-plane cracking, where predominant failure cracks are located
in the coating, would be even lower.

PHASEI, TASKI PRELIMINARYLIFE PREDICTIONMODELDEVELOPMENT

The preliminary life prediction model focuses on the two major damagemodes
identified in the laboratory testing described above. The first of these modes in-
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volves a mechanical driving force, resulting from cyclic strains and stresses in the

ceramic layer caused by thermally induced and externally imposed loads. The second

is an environmental driving force which appears, based on the experimental results,
to be related to "oxidation damage", due to the in-service growth of a NiCoCrAIY

oxide scale at the metal-ceramic interface. Based on the apparently "mechanical"

mode of ceramic failure (near interfacial ceramic cracking), and on the difficulty

in finding metallographic evidence of a direct physical link between the growing
oxide scale and incipient cracking in specimens exposed to a relatively small frac-

tion of expected life, it was elected to follow the approach of Miller (ref. l) and

employ an existing phenomenological fatigue model (Manson - Coffin) as the basis for
the TBC life model. In traditional form, this model relates cyclic inelastic strain

range to a number of cycles to fatigue failure. To incorporate an environmental

effect, the mechanical driver is analytically modified in such a way as to reduce

the apparent fatigue strength of the ceramic layer. The use of inelastic strain

range as a damage driver for the ceramic coating layer is considered justified in
view of the previously mentioned nonlinearity observed in constitutive tests con-
ducted on the strain tolerant ceramic material, including the observation of an open

hysteresis loop in preliminary tests with reversed loading.

The mathematical form of the model is: (AEi/AE f )b = Nf

where AE i

AEf

Nf
b

= Total cyclic inelastic strain range
= Failure strain

= Number of cycles to failure
= Constant

The total cyclic inelastic strain, AE i, is the sum of the A(sAT) strain plus

the heatup and cooldown strains, AE c and A£ H respectively, due to the initial

heatup and cooldown transient part of the burner rig thermal cycle:

AE i = A (sAT) +AE c + AE H -2 (_y.s./E)

The failure strain, AEf, is a function of the inelastic strain and is reduced

by the strain due to the oxide thickness ratio, _/ 6c, where 6c is the critical
oxide thickness which will cause ceramic failure in a single thermal cycle:

AEf = AEfo (I_616c)C +AE i (616c)d

The static failure strain AEfo, is the strain required to fail the ceramic
in the absence of bond coat oxidation; c and d are "adjustable" constants set equal

to unity in the preliminary analysis. Results achieved using this model to correlate

approximately one hundred individual burner rig test results obtained on Task I are

shown in figure 9. Achievement of a correlation coefficient of almost 0.9 is con-

sidered quite a good fit for this preliminary attempt.

PHASE I, TASK I - PRELIMINARY MODEL VERIFICATION TESTING

To challenge the preliminary model, three burner rig verification tests were
conducted using a single, internally cooled hollow specimen. This specimen permits

exposure of the ceramic with a steady state through a thickness gradient to more

closely simulate engine exposure of the coating, and also allows more precise in-
strumentation and control of the thermal environment. The hollow verification test

specimen is twice the diameter of the previously utilized specimen, and rotates
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about its own axis to assure circumferential temperature uniformity. These substan-
tial changes from the Task IB experimental condition assured that the preliminary
model was effectively challenged by the verification testing.

Comparisons between observed and predicted cyclic life, presented in figure I0
indicate the need for significant model refinement in Task II. While the model pre-
dicts the uncooled test result quite accurately, the two cooled test results are not
well predicted. Refinement of the model to improve prediction capability currently
is being performed in Task II, described below.

PHASE I, TASK II - MAJOR MODE LIFE PREDICTION MODEL DEVELOPMENT

The objective of this task is to improve the prediction capability of the pre-
liminary model developed in Task I. The approach involves refinement of the analyti-
cal model as well as the generation of additional "design data" for model calibra-
tion, using the improved test method first employed for the Task IC verification
tests.

Analytical enhancements involve improved modeling of the ceramic constitutive
and time dependent behavior, incorporation of an improved oxidation model developed
by Dr. Robert A. Miller (which has yet to be published but which has been related
to Pratt & Whitney through private communications with NASA), and refinement of the
finite element calculation of temperature and stress-strain distribution. In addi-
tion to the improved simulation of engine exposure conditions, the experimental
program incorporates an expanded parameter envelope to cover a broader range of
mechanical and oxidation forcing functions, as depicted in figure 11. A large por-
tion of this test matrix has been completed and the data is being used to correlate
a new life prediction model.

More accurate modeling of ceramic behavior, including nonlinear stress-strain
characteristics, assymmetric tensile and compressive response, and time dependent
inelastic deformation, is being accomplished using a time dependent constitutive
model developed by Walker (ref. 2). An example of the application of this model to
the 2200°F tension and compression data is shown in figure 12. These results show
the tensile behavior to be well modeled by the Walker approach; predictive cap-
ability in compression is quite good up to _-1% strain; beyond this point the pre-
diction departs significantly from observed behavior. An example of a hysteresis
loop calculated for a typical strain emphasis burner rig cycle is shown schemati-
cally in figure 12. There are two significant observations concerning the calculated
behavior. First, compressive strain remains below the -1% limit, beyond which the
prediction capability of the model breaks down. Second, the model predicts a very
open loop with a quite large reversed plastic strain range to drive ceramic fatigue
damage. Prediction for all of the experimental burner rig cycles currently is being
made with this model for incorporation into the improved life prediction system.

Oxidation experiments were conducted using the program's substrate - TBC system, at
the NASA Lewis Research Center. Dr. Robert Miller used this data to develop a new
more accurate oxidation model for the in_roved life prediction system. The recom-
mended weight gain expression for the data showed that the oxide growth rate is not
parabolic, but approximates t0.29 This new oxide growth rate expression in
terms of oxide thickness is being incorporated into the advanced life prediction
model.
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PHASE I - TASK III - MODEL VERIFICATION

The objective of this task is to validate the model developed in Task II through
a series of approved benchmark engine mission simulation tests. Experimental ap-
proaches to further improve the simulation capability of the test method (i.e.,
generate higher heat fluxes and larger through thickness gradients), and thus more
effectively challenge the model, currently are being explored for incorporation in
the Task 111 verification testing• Based on results of these tests, recommendations
for further research or refinement required to arrive at a fully satisfactory engine
life prediction methodology shall be made, if necessary•

I •

•
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CONCLUDING REMARKS: FIFTH ANNUAL WORKSHOP FOR THE HOST PROJECT

Daniel E. Sokolowski

NASA Lewis Research Center

Cleveland, Ohio

As reported at this workshop, the HOST Project's technical activities are

producing substantial results. Many contractor reports have become available and

are listed in a recently prepared bibliography of HOST papers. In addition,

workshops such as this will continue on an annual basis. The HOST Sixth Annual

Workshop is tentatively scheduled for October 20-21, 1987.

The nature of the problem of durability requires not only that numerous

disciplines be involved, as discussed in the opening remarks, but also that the

research itself be interdisciplinary. The success of the HOST Project to date is

due in large part to unprecedented teamwork at Lewis, at the contractors, and

between contractors and universities. In addition, the HOST Project is recognized

for the value of focused as well as interdependent research when compared with

generic, independent base R&T activities. The problem being addressed, however, has
much influence in the advocation and successful implementation of such a project.

To date, $32.0 million has been invested in HOST. In FY 1987 another

$5.0 million will be spent. The present plan for FY 1988-89 is for a total of

$7.3 million to be spent.

Finally, I want to say "thank you" to the HOST Project Team for a job well done

in conducting this workshop. In particular, I want to thank the contractor

speakers; the Subproject Managers for being session chairman; and my assistant

manager, Bob Ensign, and our Conference Coordinator, Karen Wester, for helping

organize and coordinate the multitude of efforts required.
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